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Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o
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‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors
Ensuring that the monitor represents the specified property ¢
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Making the theory come alive
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Totien Server: ¢In example in Erlang

PIDs? {PID;, 0}

PIDg < PIDp, ts:loop(1,1) Y
® DD
~_

T PIDs : PID;!n

Erlang token server (ts.erl)

1 start(Tok) -> spawn(ts, loop, [Tok, Tok]).

3 loop(OwnTok, NextTok) ->
4 receive
{cit, o} ->
Clt ! NextTok,
loop(OwnTok, NextTok + 1)
end.

wn

o

[ IRN]
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I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{PwhenC}]y

Cis a decidable Boolean constraint expression:

-Varil, var2, etc. datavariables
-1, {1, b}, etc. data values
.==, /=, >, etc. Boolean and relational operators
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%/—/

necessity modality

{P when C} defines a set of concrete of program events

An event is in this set when:
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I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

binds the free variables
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{P when C} defines a set of concrete of program events
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I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{P when C}]ff

event does not match P or if it does, C is not satisfied

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied
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la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
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PIDg : PID;'n

The server private token is not leaked in client replies

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) Y,
@ G ®
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{_ « _, ts:loop(OwnTok, _)}]
2

v

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) &y
& @)
T =)

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2

N\

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {o 33

N\

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

4 and

6 ).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDs : PIDc!n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {o 3

3 [{_:_ ! Tok when OownTok == Tok}] ff
4 and
6 ).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDs : PIDc!n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

3 [{_:_ ! Tok when ownTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y

6 ).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) &y
& @)
T =)

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

3 [{_:_ ! Tok when ownTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 {0 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y

6 ).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{ <« _, ts:loop(OwnTok, _)3}] max Y.(
2 o7 { 33(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).

_« _, ts:loop(OwnTok, _)
(m) —

f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 {7 {o 331

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).

_« _, ts:loop(0OwnTok, _)
) ——

f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 (o7 {0 33

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).
R S
_« _, ts:loop(OwnTok, _) — T
) ——
f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 {0 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).
R S
_« _, ts:loop(OwnTok, _) S
) ——)
f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

1 [{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 { 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).
2, _:_!Tokwhen OwnTok == Tok
_ <« _, ts:loop(OwnTok, _) S
(m) ¥)
T lf:fllkwhenownTak/:Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(

1
2 ({— 7 {0 33I(
3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).
IEZ A I _:_!Tokwhen OwnTok == Tok
_ <« _, ts:loop(OwnTok, _) S
(m) ¥)
T lf:fllkwhenownTak/:Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(

1
2 ({— 7 {0 33I(
3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6 ).
IEZ A _:_!Tokwhen OwnTok == Tok
Q _« _, ts:loop(OwnTok, _) — T
m ——(]
\_/
T _:_l|TokwhenOwnTok /= Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



Making the theory come alive

Challenges Solutions
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(4. Collect events efficiently
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(1. Monitor real programs)\
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(maxHML: describes properties of the current trace)
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2. Interpreting monitor descriptions

Our algorithm determinises monitors on-the-fly
Monitor descriptions are instantiated with trace event data

Scalability: we emulate disjunctive and conjunctive parallelism

monitor description

monitoring

E] E] algorithm

program trace
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2. Interpreting monitor descriptions

Our algorithm determinises monitors on-the-fly
Monitor descriptions are instantiated with trace event data

Scalability: we emulate disjunctive and conjunctive parallelism

monitor description
trace accepted o satisfied

\ e .v@:1>®
Tl ) S

program trace trace rejected o violated

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



Making the theory come alive

Challenges Solutions

— 4. Inlining monitors
(4. Collect events efficiently
: : 3. Tracking the monitor state )
3. Justify verdicts

2. Interpreting monitor descriptions )
(2. Scale the RV Setfup)\
. 1. Reasoning on data t
(1. Monitor real programs)\

Practice
POPL'T9 Theory
(Synthesis procedure ) (Monitor operational semantics) 1

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

®

_:_|Tokwhen OwnTok == Tok

_ <+ _, ts:loop(OwnTok, _) m_?{_, _} /
@ ——(—©®

_:_! TokwhenOownTok /=Tok

®

token server trace (simplified)
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4. ‘Inlining monitors

Progm/m sources

erl

Preprocessing
and parsing

Erlang compiler passes

Weaved binaries

Parse Other
transform passes
A
Weaver [a- e <
detectEr
dependencies
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Contributions and summary

An extended monitorable logic and monitors that handle data
An algorithm that follows the monitor operational semantics
Verdict explainability based on monitor reductions

One tool to monitor linear- and branching-time specifications

Future directions and improvements

+ Bound on the number of states managed by the algorithm
+ Leverage the outline instrumentation provided by detectEr
+ Empirical study of runtime overhead
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GitHub link

https://duncanatt.github.io/detecter
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‘The monitoring sel-up

Logic formulae describe properties of the program

Formula ¢ o
l branching-time
monitor synthests Interpretation
/_M

%E E 4+~ Program

UGC@

N @ .
@ inconclusive @

accepted rejected

runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta



‘The monitoring sel-up

Logic formulae describe properties of traces of the program
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71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Formula ¢
runtime model
verification checking

focus on how o is verified
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71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e
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Some encodings

Inv(e) & X = o A [Act)X

Pos(p) £ X = ¢ V (Act)X

m £ a.yes + no is unsound because for p £ a.0 we have
acc(p,m) and rej(p, m)
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How does medularity impact RV?

* Monitorability: what set of properties can be runtime checked? o
satisfied @ @ accepted

sound j

complete

v v
violated @ @ rejected

Non-negotiable requirements for monitors

+ Correct w.r.t. formulae in the monitorable logic fragment
+ Operate properly as software entities
* Induce low runtime overhead
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