7 Monitoring Tool for
Tinear-Time 1-HUT

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

monitor synthesis l

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

monitor synthesis l

‘7@ E’H Program
W_/

trace

runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

monitor synthesis

‘7@ E’H Program
: —_—

o trace

trace accepted

runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

monitor synthesis l
My [+—

. E E’H Program
W_/

trace

trace accepted trace rejected
runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢

monitor synthesis l
My [+—

. E E’H Program
W_/

trace

g B
trace accepted trace rejected

runtime

Our monitor verdicts cannot be changed once given

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢ l (FORTE21)

branching-time
monitor synthesis l
My [+—

interpretation
. E EH Program
W_/

trace

g B
trace accepted trace rejected

runtime

Our monitor verdicts cannot be changed once given

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Overview: ‘Runtime verification (‘RV)

“ RV = property as formula o + current program trace o

Formula ¢ (COORDINATION22)
linear-time
monitor syntheS/s mterprezat/on

HEE’ -+ Program

UGCE

trace accepted trace rejected

runtime

Our monitor verdicts cannot be changed once given

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors
Ensuring that the monitor represents the specified property ¢

:

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors
Ensuring that the monitor represents the specified property ¢

 satisfied trace accepted
Q ©

:

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors
Ensuring that the monitor represents the specified property ¢

 satisfied trace accepted
Q ©

:

v v
 violated @ @ trace rejected

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors
Ensuring that the monitor represents the specified property ¢

 satisfied trace accepted
Q ©

y sound D

v v
 violated @ @ trace rejected

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The aspects of modular RV

Monitorability of the logic

Establishing the set of properties that can be runtime checked

Correctness of monitors

Ensuring that the monitor represents the specified property ¢

 satisfied
Q

P

v
 violated @

@ trace accepted
sound -
complete

()VD trace rejected

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

1

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) 1

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

(4. Collect events efﬂdently)\'

(3. Justify verdicts
(2. Scale the RV setfup)\

(1. Monitor real programs)\

1

Practice

POPL'19
(Synthesis procedure) (Monitor operational semantics)

(maxHML: describes properties of the current trace)

Theory

!

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

(4. Collect events efﬂdently)\'

3. Justify verdicts
(2. Scale the RV setfup)\
/(1. Reasoning on data

(1. Monitor real programs)\ ,
Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) l

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

(4. Collect events efﬂdently)\'

3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV setfup)\
. 1. Reasoning on data
(1. Monitor real programs)\

Practice

POPL'19 -
(Synthesis procedure) (Monitor operational semantics)

(maxHML: describes properties of the current trace)

Theory

!

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

(4. Collect events efﬂdently)\'

. . 3. Tracking the monitor State)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV setfup)\
. 1. Reasoning on data
(1. Monitor real programs)\

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) l

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

_ 4. Inlining monitors)
(4. Collect events efficiently
. . 3. Tracking the monitor State)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV setfup)\
. 1. Reasoning on data
(1. Monitor real programs)\

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) l

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Totien Server: ¢In example in Erlang

PIDs? {PID;, 0}

PIDg < PIDp, ts:loop(1,1) Y
® DD
~_

T PIDs : PID;!n

Erlang token server (ts.erl)

1 start(Tok) -> spawn(ts, loop, [Tok, Tok]).

3 loop(OwnTok, NextTok) ->
4 receive
{cit, o} ->
Clt ! NextTok,
loop(OwnTok, NextTok + 1)
end.

wn

o

[IRN]

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Totien Server: ¢In example in Erlang

PIDs? {PID;, 0}

PIDs < PIDp, ts:loop(1,1) Y
® DD
~_

T PIDs : PID;!n

Erlang token server (ts.erl)

1 start(Tok) -> spawn(ts, loop, [Tok, Tok]).

3 loop(OwnTok, NextTok) ->
4 receive
{cit, o} ->
Clt ! NextTok,
loop(OwnTok, NextTok + 1)
end.

wn

o

[IRN]

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Totien Server: ¢In example in Erlang

PIDs? {PID;, 0}

PIDg < PIDp, ts:loop(1,1) &
® e o
~_

T PIDs : PID;!n

Erlang token server (ts.erl)

1 start(Tok) -> spawn(ts, loop, [Tok, Tok]).

2
3 loop(OwnTok, NextTok) ->
4 receive

{cit, o} ->
Clt ! NextTok,
loop(OwnTok, NextTok + 1)
end.

wn

o N O

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Totien Server: ¢In example in Erlang

PIDs? {PID;, 0}

PIDg < PIDp, ts:loop(1,1) Y
& GL__»
D]

T PIDs : PID;!n

Erlang token server (ts.erl)

1 start(Tok) -> spawn(ts, loop, [Tok, Tok]).

2

3 loop(OwnTok, NextTok) ->
4 receive

5 {cit, o} ->

clt ! NextTok,

loop(OwnTok, NextTok + 1)
end.

[IRN]

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

— 4. Inlining monitors
(4. Collect events efficiently
. . 3. Tracking the monitor state)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV Setfup)\
- 1. Reasoning on data
(1. Monitor real programs)\

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) l

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{PwhencCc}]y

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{PwhenCc}]y¥

pattern P matches the shape of a trace event:

-+ initialisation event pattern
-1 send event pattern
-7 receive event pattern

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{PwhenC}]y

Cis a decidable Boolean constraint expression:

-Varil, var2, etc. datavariables
-1, {1, b}, etc. data values
.==, /=, >, etc. Boolean and relational operators

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

binds the free variables

[{PwhencCc}]e®

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

binds the free variables

[{PwhencCc}]y

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

binds the free variables
[{PwhencCc}]y
%/—/

necessity modality

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

binds the free variables

[{PwhencCc}]y

formula continuation

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{P when C}]ff

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

I. Reasoning cn dala

Formulae [{P when C}]¢ in the logic use symbolic actions

[{P when C}]ff

event does not match P or if it does, C is not satisfied

{P when C} defines a set of concrete of program events

An event is in this set when:
1. P matches the event, instantiating the variables in C, and
2. Cis satisfied

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) Y,
@ G ®
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{_ « _, ts:loop(OwnTok, _)}]
2

v

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) &y
& @)
T =)

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2

N\

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {o 33

N\

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

4 and

6).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDs : PIDc!n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {o 3

3 [{_:_ ! Tok when OownTok == Tok}] ff
4 and
6).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs « PIDp, ts:loop(1,1) Y
@ @)
T N~

PIDs : PIDc!n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

3 [{_:_ ! Tok when ownTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y

6).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

la. maxHM_: an example irace property

PIDg? {PID¢, 0}

PIDs < PIDp, ts:loop(1,1) &y
& @)
T =)

PIDg : PID;'n

The server private token is not leaked in client replies

1 [{L <« _, ts:loop(OwnTok, _)}] max Y.(
2 ({7 {& 3

3 [{_:_ ! Tok when ownTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 {0 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y

6).

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{ <« _, ts:loop(OwnTok, _)3}] max Y.(
2 o7 { 33(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).

_« _, ts:loop(OwnTok, _)
(m) —

f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 {7 {o 331

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and

5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).

_« _, ts:loop(0OwnTok, _)
) ——

f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 (o7 {0 33

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).
R S
_« _, ts:loop(OwnTok, _) — T
) ——
f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 {0 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).
R S
_« _, ts:loop(OwnTok, _) S
) ——)
f

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

1 [{_ < _, ts:loop(OwnTok, _)}] max Y.(
2 ({— 7 { 33I(

3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).
2, _:_!Tokwhen OwnTok == Tok
_ <« _, ts:loop(OwnTok, _) S
(m) ¥)
T lf:fllkwhenownTak/:Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(

1
2 ({— 7 {0 33I(
3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).
IEZ A I _:_!Tokwhen OwnTok == Tok
_ <« _, ts:loop(OwnTok, _) S
(m) ¥)
T lf:fllkwhenownTak/:Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

1b. Synthesis procedure

The server private token is not leaked in client replies

[{_ < _, ts:loop(OwnTok, _)}] max Y.(

1
2 ({— 7 {0 33I(
3 [{_:_ ! Tok when OwnTok == Tok}] ff
4 and
5 [{_:_ ! Tok when OwnTok /= Tok}] Y
6).
IEZ A _:_!Tokwhen OwnTok == Tok
Q _« _, ts:loop(OwnTok, _) — T
m ——(]
_/
T _:_l|TokwhenOwnTok /= Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

— 4. Inlining monitors
(4. Collect events efficiently

. . 3. Tracking the monitor state)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV set—up)\
. 1. Reasoning on data
(1. Monitor real programs)\

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) l

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

2. Interpreting monitor descriptions

Our algorithm determinises monitors on-the-fly
Monitor descriptions are instantiated with trace event data

Scalability: we emulate disjunctive and conjunctive parallelism

monitor description

monitoring

E] E] algorithm

program trace

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

2. Interpreting monitor descriptions

Our algorithm determinises monitors on-the-fly
Monitor descriptions are instantiated with trace event data

Scalability: we emulate disjunctive and conjunctive parallelism
monitor description
.Mga \
+

monitoring

E] E]/a/gorithm

program trace

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

2. Interpreting monitor descriptions

Our algorithm determinises monitors on-the-fly
Monitor descriptions are instantiated with trace event data

Scalability: we emulate disjunctive and conjunctive parallelism

monitor description
trace accepted o satisfied

\ e .v@:1>®
Tl) S

program trace trace rejected o violated

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

— 4. Inlining monitors
(4. Collect events efficiently
: : 3. Tracking the monitor state)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV Setfup)\
. 1. Reasoning on data t
(1. Monitor real programs)\

Practice
POPL'T9 Theory
(Synthesis procedure) (Monitor operational semantics) 1

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

®

:|Tokwhen OwnTok == Tok

_ <+ _, ts:loop(OwnTok, _) m_?{_, _} /
@ ——(—©®

:! TokwhenOownTok /=Tok

®

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1 _i_! Tok when ownTok == Tok

_ <+ _, ts:loop(OwnTok, _) m_?{_, _} /
@ —=)—©®)

:! TokwhenOownTok /=Tok

®

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1 OownTok — 1 _:_ | Tokwhen OwnTok == Tok

_ <+ _, ts:loop(OwnTok, _) m_?{_, _}/‘
® —=()==®)

:! TokwhenOownTok /=Tok

®

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

X ownTok — 1
Tok —2
ownTok — 1 OownTok — 1 _:_ | Tokwhen OwnTok == Tok

_ <+ _, ts:loop(OwnTok, _) m_?{_, _}/
® —=()==®)

:! TokwhenOownTok /=Tok

ownTok — 1

Tok =2 @

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1 OownTok — 1

I
I@

_ <+ _, ts:loop(OwnTok, _) m_?{_, _}/‘
® —=()==®)

:! TokwhenOownTok /=Tok

ownTok — 1

Tok =2 @

token server trace (simplified)

:|Tok when OwnTok == Tok

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1 OownTok — 1 _:_ | Tok when OwnTok == Tok

@‘_r ts:loop(OwnTok, _) @J{_, -} @) @

I
Il@

:! TokwhenOownTok /=Tok | Tok when 0 X B
:|Tokwhen OwnTok == To

ownTok — 1

Tok 2 07 {3 @

_:_lTokwhen OwnTok /=Tok

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1 OownTok — 1 _:_ | Tok when OwnTok == Tok

@7~4 ts:loop(OwnTok, _) @J{_, -} @) @

:! TokwhenOownTok /=Tok
ownTok—1| | _: | Tokwhen OwnTok == Tok

ownTok — 1

Tok 2 07 {3 @

_:_lTokwhen OwnTok /=Tok

token server trace (simplified)

I
I@

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1

I
I@

ownTok—1| | : | TokwhenOwnTok == Tok

@7~4 ts:loop(OwnTok, _) @J{_, -} @) @

T ownTok — 1
Tok —1
:! TokwhenOownTok /=Tok
ownTok—1 || _: | Tokwhen OwnTok == Tok

ownTok — 1

Tok 2 07 {3 ®>

_:_lTokwhen OwnTok /= Tok

. ?ﬁﬂ“’kiﬁi @
i >

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

3. Tracking the monitor state

* Explainability = tracking monitor state + applied rules o

ownTok — 1

I
I@

ownTok—1| | : | TokwhenOwnTok == Tok

@7~4 ts:loop(OwnTok, _) @J{_, -} @) @

T ownTok — 1
Tok —1
:! TokwhenOownTok /=Tok
ownTok—1 || _: | Tokwhen OwnTok == Tok

ownTok — 1

Tok 2 07 {3 ®>

:_ | Tok when ownTok /= Tok

EEEE -)

token server trace (simplified)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Making the theory come alive

Challenges Solutions

i 4. Inlining monitors)
(4. Collect events efficiently
. . 3. Tracking the monitor state)
3. Justify verdicts

2. Interpreting monitor descriptions)
(2. Scale the RV Setfup)\
. 1. Reasoning on data
(1. Monitor real programs)\

Practice
POPLT9 Theory
(Synthesis procedure) (Monitor operational semantics) 1

(maxHML: describes properties of the current trace)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

4. ‘Inlining monitors

Progm/m sources

erl

Preprocessing
and parsing

Erlang compiler passes

Weaved binaries

Parse Other
transform passes
A
Weaver [a- e <
detectEr
dependencies

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Synthesised
monitors

4. ‘Inlining monitors

Progm/m sources

erl

Preprocessing
and parsing

Erlang compiler passes

Weaved binaries

Parse Other
transform passes
A
Weaver [a- e <
detectEr
dependencies

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Synthesised
monitors

4. ‘Inlining monitors

Progm/m sources

erl

Preprocessing
and parsing

Erlang compiler passes

AST

L

Weaved binaries

Parse Other
transform passes
A
Weaver [a- e <
detectEr
dependencies

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Synthesised
monitors

4. ‘Inlining monitors

Progm/m sources

erl Erlang compiler passes
AST Weaved binaries
Preprocessing J<\‘ Parse Other
and parsing transform passes
A

AST
A

Weaver [a- e <

detectEr Synthesised
dependencies monitors

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

4. ‘Inlining monitors

Progm/m sources

erl Erlang compiler passes
AST Weaved binaries
Preprocessing J<\‘ Parse Other
and parsing transform passes

AST AST

K| (A

detectEr Synthesised
dependencies monitors

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

4. ‘Inlining monitors

Progm/m sources

erl Erlang compiler passes
AST AT Weaved binaries
Preprocessing J<\‘ Parse /0 Other
and parsing transform passes
A
AST AST

A1 |A)

detectEr Synthesised
dependencies monitors

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

4. ‘Inlining monitors

Progm/m sources

erl Erlang compiler passes
AST AT Weaved binaries
Preprocessing J<\‘ Parse /G Other
and parsing transform passes
A
AST AST

A1 |A)

detectEr Synthesised
dependencies monitors

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Contributions and summary

An extended monitorable logic and monitors that handle data
An algorithm that follows the monitor operational semantics
Verdict explainability based on monitor reductions

One tool to monitor linear- and branching-time specifications

Future directions and improvements

+ Bound on the number of states managed by the algorithm
+ Leverage the outline instrumentation provided by detectEr
+ Empirical study of runtime overhead

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

GitHub link

https://duncanatt.github.io/detecter

L. Aceto et al, - CS, Reykjavik University and CS, University of Malta

https://duncanatt.github.io/detecter

‘The monitoring sel-up

Logic formulae describe properties of the program

Formula ¢ o
l branching-time
monitor synthests Interpretation
/_M

%E E 4+~ Program

UGC@

N @ .
@ inconclusive @

accepted rejected

runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

‘The monitoring sel-up

Logic formulae describe properties of traces of the program

Formula ¢
linear-time
monitor syntheS/s /merpretar/on

%B E’ 4+~ Program

IFGCG

@ ®
accepted rejected

runtime

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Formula ¢
runtime model
verification checking

focus on how o is verified

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Formula ¢

!

runtime model
verification checking

focus on how o is verified

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

Formula ¢

!

runtime
verification

@

o satisfied

5

focus on what » means

model
checking

focus on how o is verified

 violated

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Formula ¢

!

model runtime
checking verification

focus on how o is verified

@ 5

o satisfied violated

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Form ©mc § § ula DRV

model runtime
checking verification

focus on how o is verified

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Form ©mc § § ula DRV

model runtime
checking verification

focus on how o is verified

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

71 modular approach to verification

% The meaning of ¢ is agnostic of the verification method e

focus on what » means

Form ©mc § § ula DRV

+

model runtime
checking - - Vverification

focus on how o is verified

& W

 satisfied violated

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

Some encodings

Inv(e) & X = o A [Act)X

Pos(p) £ X = ¢ V (Act)X

m £ a.yes + no is unsound because for p £ a.0 we have
acc(p,m) and rej(p, m)

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

How does medularity impact RV?

* Monitorability: what set of properties can be runtime checked? o
satisfied @ @ accepted

sound j

complete

v v
violated @ @ rejected

Non-negotiable requirements for monitors

+ Correct w.r.t. formulae in the monitorable logic fragment
+ Operate properly as software entities
* Induce low runtime overhead

L. Aceto et al. - CS, Reykjavik University and CS, University of Malta

	whiteThank you

