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Abstract

Modern software is built on reactive principles, where systems are responsive, resilient, elastic, and

message-driven. Despite the benefits they engender, these aspects make the correctness of reactive

systems in terms of their expected behaviour hard to ascertain statically. This thesis investigates how

the correctness of reactive systems can be ascertained dynamically at runtime. It considers a lightweight

monitoring technique, called runtime verification, that circumvents the issues associated with traditional

pre-deployment techniques. One core challenge of runtime verification lies in choosing a monitoring

approach that does not impinge on the reactive aspects of the system under scrutiny. Such a goal is met

only if the monitoring system is itself reactive. We propose a novel monitoring approach grounded on this

precept. It treats the system as a black box, instrumenting monitors dynamically and in an asynchronous

fashion, which is in tune with the requirements of reactive architectures. Our development approach is

systematic, mapping directly the constituent parts of our formal model to implementable modules. This

gives assurances that the results obtained in the theory are preserved in the implementation.

The first part of the thesis builds on established theoretical results. It lifts these results to a first-

order setting to accommodate scenarios where systems manipulate data. We define an asynchronous

instrumentation relation that decouples the operation of the system from that of its monitors. This

definition forms the basis of our decentralised outline monitoring algorithm presented in the second part

of the thesis. Our algorithm employs a tracing infrastructure to collect trace events as the system executes

and uses key events as cues to instrument new monitors or terminate redundant ones dynamically. It

accounts for the interleaving of events that arises from the asynchronous execution of the system and

monitors, guaranteeing that events are analysed by monitors in the correct sequence and without gaps.

Part three develops a runtime verification benchmarking framework that is tailored for reactive systems.

The framework can generate models that faithfully capture the realistic behaviour of master-worker

systems under typical load characteristics. Our tool collects different performance metrics suited to

reactive applications, to give a multi-faceted depiction of the overhead induced by runtime monitoring

tools. Part four of this thesis embarks on an extensive evaluation of our decentralised outline monitoring

algorithm using the benchmarking tool developed in part three. The algorithm is compared against our

implementation of inline and centralised monitoring—two prevalent methods used in state-of-the-art

runtime verification tools. Apart from demonstrating that our monitoring algorithm is reactive, the

experiments we conduct testify that it induces acceptable overhead that, in typical cases, is comparable to

that of inlining. These results also confirm that centralised monitoring is prone to scalability issues, poor

performance, and failure, making it generally inapplicable to reactive system settings. We are unaware

of other comprehensive empirical runtime verification studies such as ours that compare decentralised,

centralised, and inline monitoring.
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1 Introduction

Modern software applications are architected in terms of concurrent components that execute indepen-

dently to one another without recourse to a global clock or shared state [15, 140]. Instead, components

interact together and with their environment via non-blocking messaging [136] to create a dynamic,

loosely-coupled software organisation known as a reactive system [2, 153]. Reactive systems must:

• respond in a timely manner (be responsive),

• remain available in the face of failure (be resilient),

• grow and shrink to accommodate variable computational loads (be elastic), and

• react to inputs from users or their environment (be message-driven).

Such architectures facilitate incremental updates (maintainability) and permit the various constituent

components to execute on different locations (distribution) [153, 83, 120]. At the same time, the benefits of

reactive systems make the correctness in terms of their expected behaviour hard to verify statically [119].

This thesis investigates how the correctness of reactive systems can be established at runtime. We

consider runtime verification (RV), which is a dynamic technique that checks the current execution of

a system under scrutiny (SuS) to determine whether it satisfies or violates some correctness property.

RV uses monitors—computational machines that are synthesised from formal property descriptions.

Monitors are instrumented with the SuS to incrementally analyse its execution (expressed as a trace of

events) and reach verdicts about its observed behaviour. We make the following contributions.

(i) Build on previous theoretical results [6, 8] and extend their specification language, monitor

operational model, and monitor synthesis procedure with predicates to reason on the data carried

by trace events. We implement these extensions and give a technique for instrumenting inline

monitors. Additionally, we define an asynchronous instrumentation relation that decouples the

operation of the SuS from that of its monitors, in line with a reactive approach.

(ii) Devise a decentralised outline monitoring algorithm that realises the asynchronous instrumentation

definition of (i). Our algorithm accounts for the interleaving arising from asynchronous execution

and guarantees that trace events are reported to monitors in the correct order and without loss.

(iii) Develop a configurable benchmarking framework that can generate synthetic SuS models which

reproduce the realistic behaviour of master-worker systems. This tool collects various performance

metrics to give a multi-faceted view of overhead that is relevant to reactive runtime monitoring.

(iv) Give a comprehensive empirical evaluation of the overhead induced by the instantiation of the for-

malisation developed in contribution (i) as the algorithm in (ii), using the benchmarking framework

of (iii). We compare (ii) against our implementations of inline and centralised instrumentation—

also based on contribution (ii)—to demonstrate that our decentralised approach induces feasible

overhead that, in typical cases, is proportionate to, or outperforms the latter methods.

1
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1.1 Motivation and Contributions Summary

Our ultimate research goal is to construct a suite of runtime monitoring tools for reactive systems

founded on the contributions (i) to (iv). We use these tools as a vehicle to:

• demonstrate that the formalisation and method proposed in contributions (i) and (ii) can be imple-

mented in a general-purpose language that targets reactive applications (chapters 4 and 5);

• debunk the commonly-held belief [90, 25] that decentralised outline instrumentation is necessarily

infeasible (section 7.2) and show that in typical cases, inline and outline instrumentation induce

comparable runtime overhead (section 7.3);

• confirm that centralised monitoring approaches are generally inapplicable in settings exhibiting

moderate to high concurrency, and are prone to poor performance or failure (section 7.2).

Based on these conclusions, we immediately note that decentralised outline monitoring is the only viable

approach when inlining cannot be employed (refer to discussion in section 2.1.4). Sections 1.1.1 to 1.1.4

respectively detail the research gaps that each of contributions (i) to (iv) addresses.

1.1.1 Asynchronous Runtime Monitoring with Data

RV approaches that are not equipped to handle data explicitly have very limited applicability in practice.

For instance, the property stating ‘always greater than zero’, is easily expressed as the linear temporal

logic (LTL) formula G 1∨G 2, when the set of actions that a SuS can exhibit is {0, 1,2}. However,

a generalisation of this requirement to the domain of integers cannot be expressed in a finite way.

Equipping the specification logic with a predicate over data values and variables enables us to compactly

represent this requirement using the formula G (𝑥 >0). The same reasoning can be extended to monitors

that runtime check such specifications against system executions.

Our work follows this route. It builds on the theoretical results of Aceto et al. [6, 8] that use the linear-

time interpretation of the Hennessy-Milner logic with recursion (`HML), a highly-expressive modal

logic that can encode other logics such as LTL. This gives our work a sufficiently-general basis. In op. cit.,

the authors define an operational model of regular monitors and a compositional synthesis procedure

that generates monitors from monitorable fragments of the logic. We lift their results and extend the

logic, monitors, and synthesis procedure with predicates over data. One challenge that arises upon

introducing data predicates is that of variable binding and scoping, that gives rise to subtle dependencies

between sub-formulae and complicates their runtime checking. We address this aspect from two angles.

First, our synthesis procedure generates parallel monitors whose constituent sub-monitors runtime

check different sub-formulae and can reach independent verdicts. Second, the executable monitor code

generated delegates the binding and scoping aspects to the implementation language to streamline the

synthesis. In addition to augmenting the model of Aceto et al. [6, 8] with data predicates, we provide

an alternative asynchronous instrumentation definition to the synchronous one given by the aforesaid

authors. Our definition is preferable in reactive systems settings since the SuS and monitors can be

organised into independent components. Separating the SuS and monitors minimises the dependencies

between these entities and the risk that the system is impacted by the operation of monitors.
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1.1.2 Decentralised Outline Monitor Instrumentation

We claim that reactive applications necessitate a RV monitoring set-up that is itself reactive and,

crucially, does not impinge on any of the reactive characteristics of the SuS. One of the main challenges

in constructing RV tools lies in choosing an instrumentation technique that suits the architecture of SuS

one wants monitored. Intuitively, instrumentation can be seen as a procedure ⊳ that takes a SuS and its

monitors, and composes them together as a monitored system, which we denote by

Monitors ⊳ 𝑆𝑢𝑆

State-of-the-art approaches that focus on monolithic programs generally prefer synchronous instru-

mentation in the form of monitor inlining (see section 2.1.4 for details), since the targeted systems are

typically single-threaded and do not scale (e.g. [197, 70, 68, 175, 24, 148, 138]). Numerous other works that

consider decentralised or distributed systems and use synchronous or asynchronous instrumentation

methods assume a static SuS whose number of components is known and remains fixed at runtime

(e.g. [31, 45, 67, 122, 180, 203, 208, 219]). Observe that in both cases described, the SuS is not reactive as it

is neither resilient (single-threaded) nor elastic (static).

The RV approaches that do support dynamic systems mostly adopt inline instrumentation. Inlining

remains the predominant method used in decentralised and distributed RV (e.g. [60, 148, 89, 87, 34, 45,

110, 13]). One possible reason behind this is that most efforts extend mature tools that were originally

conceived for monolithic RV, where inlining has traditionally performed well. It is, therefore, natural to

want to extend this proven approach to a new domain such as decentralised monitoring, rather than

abandon the prior implementation investment in favour of a completely new approach. However, inlining

creates a tight dependency between the SuS and its monitors. This dependency is known to hamper

the responsiveness of the SuS when the inlined monitors are slow in their runtime analysis [61, 51]; it

can also impinge on the resiliency of the system when monitors suffer from faults or failures. For these

reasons, we view inline instrumentation as producing a monitored system i.e., Monitors ⊳𝑆𝑢𝑆 , that might

not be reactive.

Centralised monitoring is an approach occasionally adopted when inlining cannot be administered to

the SuS (see section 2.1.4 for reasons). In a centralised set-up, it is often the case that a singleton monitor

is instrumented to execute apart of the reactive SuS via outlining. Trace events exhibited by different

components of the SuS are directed to a central collection point, such as a queue, that the monitor then

accesses to analyse these events (e.g. [71, 21, 219, 113, 51, 52, 207, 101]). While the serialisation of events

on the centralised monitor may facilitate the runtime analysis, it creates contention and sacrifices the

scalability of the system. This means that a centralised monitoring set-up can experience diminishing

returns as new computational resources are introduced [18]. Moreover, the reliance on one monitoring

entity makes centralised set-ups susceptible to single point of failures (SPOFs) [153, 152]. We hold that

these two shortcomings (evidence of both is given in our empirical investigation of chapter 7) renders

the monitored system, Monitor ⊳Queue ⊳ 𝑆𝑢𝑆 , not reactive.

We propose an algorithm that dynamically instruments decentralised outline monitors as the SuS

executes. The asynchronous instrumentation definition we give as part of the contribution outlined

in section 1.1.1 is used as the basis of our decentralised algorithm. The algorithm generalises the

configuration Monitor ⊳Queue⊳𝑆𝑢𝑆 to different SuS components, where each is organised with a separate
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monitor and trace event message queue:

(Monitor ⊳Queue ⊳Component)𝑖

To the best of our knowledge, this approach is novel. In fact, the latest taxonomy of RV tools in Falcone

et al. [100, Tables 3 and 4] shows that none of the works it catalogues use outlining combined with de-

centralisation1. Another recent classification for decentralised and distributed monitoring in Francalanza

et al. [119, Tables 1 and 2] also indicates that the approach we propose remains unexplored2. One ratio-

nale why outlining is seldom considered for decentralised RV arises from its perceived infeasibly high

overhead when compared to inlining. This is partly because inlining statically identifies the designated

monitor instrumentation points within the SuS, whereas outlining defers this decision post-deployment.

The perception about high overheads is reinforced when the overhead in decentralised RV is gauged

in terms of criteria that are applicable to monolithic, batch-style systems (e.g. percentage slowdown)

that are hardly relevant to reactive settings (see e.g. [158, 184, 185, 62, 61, 197, 43]). This lack of proper RV

benchmarking tools for reactive systems motivates our third contribution of section 1.1.3.

However, the foremost reason for the scarce adoption of decentralised outline instrumentation is that

reactive systems impose onerous terms that make it hard to build. Chief among these requirements is

the capacity for a reactive system to grow and shrink in response to fluctuating computational demands,

obliging the RV set-up to scale accordingly. With the use of inlining, such elastic behaviour emerges

naturally as a byproduct of the monitor logic that is weaved into the components of the reactive system

itself. By contrast, elasticity must be explicitly engineered in the decentralised outline case so that

the instrumentation can reconfigure its monitoring set-up while the runtime analysis is underway.

Decoupling the SuS from its monitors calls for the instrumentation to contend with the inherent race

conditions (e.g. message reordering) that arise from the asynchronous execution of the SuS and monitors.

As section 2.1.4 later stresses, instrumentation that is tailored for verification purposes must ensure

that the trace events collected from the SuS are reported to the correct monitors in the proper order

and with no loss, lest this invalidates the runtime analysis [25]. The lock-step execution of the weaved

system-monitor components spares inline monitoring these complications. Despite the challenges

that decentralised outline instrumentation poses, the monitored system that results from this set-up is

reactive (refer to section 5.4).

1.1.3 Quantifying Runtime Overhead Reliably

The overhead induced by monitors is a manifestation of the formal framework that underpins the

RV model and the implementation effort that instantiates it as a concrete software artefact. Runtime

overhead is the litmus test that determines whether a monitoring tool is applicable in practice [25].

Benchmarking is a commonly-accepted practice of gauging runtime overhead in software [165] which is

also adopted by the RV community [25, 119]. The usefulness of benchmarking tools rests on two aspects,

namely, (i) the coverage of scenarios of interest, and (ii) the quality of runtime metrics collected by the

benchmark harness [108]. Benchmarking tools (e.g. [215, 40, 212, 193]) generally employ third-party

off-the-shelf (OTS) programs to capture scenarios of interest. OTS software is appealing, as it inherently

1While THEMIS [88] and StateRover [85] are marked as decentralised outline approaches in [100], both are simulation tools.
2The authors use the label ‘Distributed Monitoring’, but this refers to concurrent monitors on the same machine.
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provides realistic scenarios and can be readily integrated within an existing benchmarking suite. In

a bid to broaden and diversify the coverage of real-world scenarios, benchmarking tools rely on a

range of OTS programs (e.g. DaCapo [40] uses 11 open-source libraries, Renaissance [193] uses 21). Yet,

using such programs as benchmarks poses certain challenges. By design, OTS programs do not expose

hooks that enable harnesses to easily and accurately gather the runtime metrics of interest. When OTS

software is treated as a black box, benchmarks become harder to control, impacting their ability to

produce repeatable results. OTS software-based benchmarks are also limited when inducing specific

edge cases—this aspect is critical when assessing the safety of software, such as runtime monitors, that

are often assumed to be dependable [25, 112]. Custom-built synthetic programs (e.g. Savina [137]) are

an alternative way to perform benchmarking [46]. These tend to be less popular due to the perceived

drawbacks associated with developing such programs from scratch and the lack of ‘real-world’ behaviour

intrinsic to benchmarks based on OTS software. However, synthetic benchmarks offer benefits that

offset these drawbacks. For example, specialised hooks can be built into the synthetic set-up to collect

specific runtime metrics. Moreover, synthetic benchmarks can also be parametrised to emulate variations

on the same core benchmark behaviour; this is usually harder to achieve via OTS programs that, often,

implement very specific use cases.

Established benchmarking frameworks such as SPECjvm2008 [215], DaCapo [40], ScalaBench [212] and

Savina [137]—developed for the Java virtual machine (JVM)—have been adopted by the RV community as

the benchmarking tools of choice, e.g. see [185, 62, 61, 197, 43, 176, 124]. Apart from [176], the cited works

assess the runtime overhead solely in terms of the execution slowdown, i.e., the difference in running

time between the system fitted with and without monitors. While this metric is suited to batch-style

monolithic programs [68, 100], it is inapplicable to the reactive setting, where systems are engineered

to not terminate. The response time (or latency) between communicating components is one of the

fundamental aspects that quantifies the quality of a reactive system [153]. Concretely, it reflects the

responsiveness from a client standpoint (e.g. interactive apps) [187, 217, 211, 73]; in the broader sense, it

indicates the service degradation that one should manage to ensure adequate quality of service [49, 151].

The first competition on runtime verification (CRV) [26] advocates for the memory consumption as

another measure that gives a more complete view of runtime overhead. However, the CRV disregards

the scheduler (or CPU) utilisation that, for component-based applications, indicates how well the tool

being benchmarked maximises the capacity of the processing elements provided by the host platform.

Arguably, benchmarking tools like the ones above (e.g. Savina) should provide even more. RV set-ups

for reactive systems need to scale in response to dynamic changes, and the capacity for a benchmark to

emulate high loads cannot be overstated. In practice, these loads assume characteristic profiles (e.g. spikes

or uniform rates), which are hard to administer with the benchmarking tools mentioned earlier. The

state of the art in benchmarking for concurrent RV suffers from another core issue. At one end, existing

benchmarking tools are repurposed for RV, but are not made to account for concurrent scenarios where

RV is realistically put to use. For instance, SPECjvm2008, DaCapo, and ScalaBench lack workloads that

leverage the JVM concurrency primitives [193]; meanwhile, Blessing et al. [41] show that the Savina

microbenchmarks are essentially sequential and that the rest of the programs in the suite are sufficiently

simple to be regarded as microbenchmarks, too. This makes it challenging to generalise the results

obtained from experiments based on these benchmarks. At the other end, the RV-centric CRV suite

mostly targets monolithic software with limited concurrency, where the potential for scaling to high loads
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is, therefore, severely curbed. Its recent editions [98, 198, 27] acknowledge that concurrency remains

uncatered for.

In the absence of a suitable solution that provides for reactive systems, we propose a synthetic

benchmarking framework that addresses the deficiencies described above. The framework records

three performance metrics—response time, memory consumption, and scheduler utilisation—that give

a comprehensive depiction of runtime overhead. Our tool is configurable. It can generate different

benchmarking models of master-worker systems based on various parameters and subject these models

to load profiles that are typically observed in practice. Despite the synthetic nature of the tool, the

models it generates capture the realistic behaviour of software which is conducive to reliably quantifying

overhead. This improves the likelihood that conclusions drawn from the synthetic experiments are

portable to real-world applications of the evaluated RV tool.

1.1.4 Evaluating Decentralised Outline Runtime Monitoring

The benchmarking tool developed in section 1.1.3 is used to empirically assess the three monitor instru-

mentation techniques, inline, outline decentralised, and outline centralised, mentioned in section 1.1.2.

Our experiment set-up is extensive. It considers two configurations to model edge-case scenarios based

on limited hardware, and general-case scenarios using modern hardware. We subject the three instru-

mentation algorithms to high loads that go beyond the state of the art and use realistic load profiles that,

to wit, are not considered in the literature.

This empirical study shows that our decentralised instrumentation algorithm is, in fact, reactive, and

does not impinge on the reactive characteristics of the SuS. It further deems the overhead our algorithm

induces feasible for soft real-time applications [149]. We also certify that the known shortcomings

of centralised architectures (see discussion in section 1.1.2) apply to our RV setting, too, where (i) the

exhaustion of system resources leads the set-up to crash in the edge-case scenario due to its SPOF, and

(ii) the central monitor does not avail of the ample hardware capacity provided by the general-case

scenario. We are unaware of other comprehensive empirical RV studies such as ours that compare

decentralised, centralised and inline monitoring.

1.2 Scope of the Study

We adopt the actor model of computation [133, 15] to conduct our scientific study. The actor model

provides a simple, yet powerful paradigm to design and implement systems that follow the reactive

principles introduced on page 1. Actors—the basic unit of decomposition in this model—are abstractions

of concurrent entities that do not share mutable memory with other actors. Instead, actors interact

through asynchronous messaging and alter their internal state based on messages they consume. Each

actor is equipped with an incoming message buffer called the mailbox, from where messages deposited

by other actors may be selectively read. Besides sending and receiving messages, actors can fork other

actors. Actors are uniquely identifiable via their dynamically-assigned process identifier (PID) that they

use to directly address one another.

The actor model is instantiated by a number of languages and frameworks, including Erlang [19, 57],

Elixir [142], Akka [199] for Java [169], Thespian [194] for Python [173], and Pony [218]. We choose

Erlang as our implementation language since it is specifically engineered for high-concurrency, soft real-
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time applications. BEAM, the Erlang virtual machine (EVM) implements actors as isolated lightweight

processes which enables the remarkable scalability and fault tolerance of Erlang applications. The

EVM uses per-process garbage collection that—unlike JVM implementations—does not subject the entire

virtual machine to non-deterministic pauses [139, 188]. This aspect is particularly crucial to our empirical

experiments conducted for the contribution of section 1.1.4 because it helps to stabilise the variance in

our measurements. Conveniently, the EVM provides a native tracing infrastructure which tames the

technical challenges that arise when implementing decentralised outline monitoring (see section 1.1.2).

The terms actor and process are used synonymously in Erlang-related literature, and we adopt the same

nomenclature in the rest of this thesis.

The inherent concurrency of components in reactive applications gives rise to natural partitions in the

global execution of the SuS in the form of isolated sub-traces for each component. Our decentralised

instrumentation algorithm exploits this view to generate trace partitions. These partitions make it

possible to conceive of the overall system correctness as a collection of local properties that describe the

behaviour of independent components. Such an approach gives certain advantages. It allows one to be

selective about the SuS components that require runtime checking, and to specify properties accordingly.

A similar technique called parametric trace slicing (PTS) [62, 201] is used in monolithic RV where

properties are often specified on objects, the unit of decomposition of OOP paradigms [138, 176, 197]; by

contrast, we focus on concurrent components. Being selective about the components to verify means

that local properties need only be concerned about the trace events related to the component under

scrutiny. This simplifies the corresponding specifications. The notion of local properties can be leveraged

to dynamically instrument component replicas with monitors, free from assumptions about the number

of components the SuS is expected to have, making the RV set-up elastic. Besides, the set-up benefits

from a modicum of resiliency since failure in a system component or its corresponding monitor does

not imperil the execution or runtime analysis of analogous components.

This thesis focusses on online RV [100], where the analysis that runtime monitors conduct takes place

whilst the SuS executes. In this setting, we scope our study to reactive systems where failures do not

arise, i.e., we assume no link or communication omission failures [83], and no fail-stop or Byzantine

failures [157].

1.3 Outline

The body of this thesis is organised into six main chapters. Chapter 2 introduces the classical RV set-up

that assumes a single execution. Our development follows the modular approach advocated by Aceto

et al. [6, 8] that delineates the semantics of the specification logic and the semantics of the monitor

operational model. The chapter overviews the notions of monitors, monitorability in terms of soundness

and completeness, and monitor instrumentation in the context of reactive systems. We lift definitions

of these concepts from op. cit. and restate them as templates; these are instantiated w.r.t. a concrete

definition of the logic and monitor model in chapter 3. Chapter 2 concludes with an outline of the

linear-time and branching-time interpretations of the `HML. The logic is augmented with symbolic

actions, consisting of variables and predicates that enable the reasoning about data carried by process

actions; we refer to these extensions as `HMLd. This thesis adopts the linear-time semantics of the

`HMLd.
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The third chapter builds on the principles of chapter 2. It reviews the linear-time `HMLd that is

used to describe properties about the current execution, and shows how properties concerning data

can be flexibly specified. We borrow the operational model of monitors used by Aceto et al. [6, 8]

and extend it with the symbolic actions of chapter 2. The logic and monitor model, together with the

synchronous instrumentation relation specified in the cited work suffice to give concrete definitions of

soundness, completeness, and monitorability. Based on these concrete definitions, we restate the minimal

and maximal monitorable fragments of `HMLd that Aceto et al. [6] show to be maximally-expressive.

Chapter 3 also adapts the synthesis procedure given in the latter work for the case of regular monitors

to generate monitors that handle data. We define an alternative instrumentation relation to the one

in Aceto et al. [6] that composes the SuS and monitors asynchronously. This asynchronous definition

lays the foundation for our decentralised outline instrumentation algorithm described in chapter 5

Chapter 4 revisits the symbolic actions of chapter 2 and generalises them by introducing pattern

matching, enabling the logic and monitors to reason on composite data types (e.g. tuples, lists, etc.).

We use tuples to define a simple model that describes the process events: fork (process creation),

initialise (process initialisation), exit (process termination), send, and receive. This chapter concretises

our synthesis procedure of chapter 3 to generate executable monitors—these use a subset of the Erlang

syntax to delegate variable binding, scoping, and pattern matching to the language runtime. The

monitoring algorithm that we give encodes the monitor operational semantics defined in chapter 3 and

is used to evaluate synthesised monitors. One aspect that the instrumentation relations of chapter 3

leave unspecified is how processes of the SuS can be selectively instrumented. We generalise our

instrumentation definitions to make use of the instrumentation map that identifies the processes to

be monitored based on the signature of the function used to fork them. Chapter 4 also details an

implementation of synchronous instrumentation that instruments monitors selectively. The procedure

inlines monitors by manipulating the abstract syntax tree (AST) of Erlang programs via source-level

weaving, which results in a modified program.

Decentralised outline instrumentation adopts a non-invasive approach that treats the SuS and its

components as a black box. Outlining assumes a tracing infrastructure that collects events from the

running system. By contrast to inlining, which instruments monitors statically, our algorithm of chapter 5

uses key events in the execution trace as cues to instrument monitors dynamically. Decoupling the SuS

and monitors introduces complications that arise due to the interleaved execution of the system and

monitors. The main part of chapter 5 is devoted to describing the methods we use to overcome these

challenges. We elucidate how our algorithm instantiates the instrumentation definition of chapter 3

while ensuring that the events reported to monitors are in the correct order and with no loss. Chapter 5

discusses briefly how the algorithm we give is mappable to Erlang actors, followed by a series of

precautions taken to ensure its correct operation. Our implementation is validated further via the

comprehensive empirical study of chapter 7.

Chapter 6 proposes a benchmarking framework that targets RV tools built for reactive systems. The

framework follows the master-worker model—an architecture that is pervasive in both distributed and

concurrent systems. Our tool is configurable and can generate different synthetic master-worker models

for high loads and under commonly-observed load profiles. The benchmarking environment gathers

different metrics (see contribution (iii)) that give a multi-faceted view of runtime overhead. In spite of

the synthetic models it generates, we empirically show that our tool can be tuned to approximate the
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realistic behaviour of web server traffic with high degrees of fidelity and repeatability. We showcase the

efficacy of our benchmarking tool via a two-part case study. First, we use our inline monitoring tool of

chapter 4 to demonstrate how the framework can induce edge-case scenarios. The second case-study

confirms that the results obtained from our experiments with a real-world use-case set up with OTS

software coincide with the ones obtained by the synthetic experiments.

Chapter 7 presents an comprehensive evaluation of three instrumentation approaches: (i) our decen-

tralised outline algorithm of chapter 5, (ii) its different configuration for centralised monitoring, and

(iii) the inlining approach developed in chapter 4. Through our extensive experiment set-up, we show

that decentralised outline monitoring is reactive and that it induces feasible runtime overhead that

makes it practicable in soft real-time settings. By contrast, our configuration with centralised moni-

toring crashed when the resources were scarce, and failed to scale properly when additional resources

were made available. Chapter 7 makes other observations as a byproduct of our experiments, e.g. a

considerable amount of the monitoring overhead is carried by the instrumentation. In particular, we

remark that in cases where the SuS does not continually create and terminate processes, decentralised

outline monitoring induces comparable overhead to inline monitoring.

The main contributions of this thesis are found in chapters 4 to 7. Our extensions to the logic, monitor

operational semantics and synthesis procedure of Aceto et al. [6] in chapters 2 and 3 are vehicles

supporting the work in the aforementioned chapters; the definition of the asynchronous instrumentation,

meanwhile, formalises part of the ideas of chapter 5.

1.3.1 How to Read this Thesis

Readers familiar with the fundamentals of RV may skip chapter 2 on first reading. Chapter 3 introduces

the notions that chapter 4 and the initial part of chapter 5 build upon. Chapter 5 lists the pseudocode

of our decentralised outline instrumentation algorithm, accompanied by the challenges that arise and

the steps taken to address them. The material is technical and readers may find table 5.2 helpful to

navigate through the sections in this chapter. Chapter 6 can be fully understood independently of the

other chapters, and is likewise technical. Chapter 7 makes frequent references to the configuration

parameters offered by our benchmarking framework of chapter 6. A summary of these parameters is

provided in table 6.1 for convenience. Whilst discussing the results, chapter 7 mentions certain specifics

of the algorithms developed in chapters 4 and 5. It is therefore advisable to embark on chapter 7 only

after having read these chapters. Table 7.1 lists the set-ups used in our experiments, whereas table 7.3

summarises our claims and the outcomes expected from each experiment. Readers may find it helpful

to consult these table when reading chapter 7. Supporting material for the algorithm of chapter 5 is

provided in appendix A; additional results for chapter 7 may be found in appendix C. While reading

these appendices is not necessary to understanding the work in the main text, one may benefit from

skimming this content.



2 Preliminaries

There are three key aspects to RV: the specification formalism used to express properties, the monitors

that conduct the runtime checking, and the instrumentation that composes monitors with the SuS.

These aspects are linked by the notion of monitorability that identifies what expressible properties

can be runtime checked. This chapter adopts the modular approach advocated by Aceto et al. [6, 8],

which delineates the semantics of the specification formalism, and the verdicts that monitors flag as

a result of their runtime analysis. Following op. cit., we regard monitors as machines that (i) analyse

finite trace prefixes, and (ii) reach irrevocable verdicts, that once given, cannot be retracted. The unified

monitorability definition of Aceto et al. [8] for the finite and infinite trace domain uses the notions of

soundness and completeness which are based on two predicates that determine whether monitors accept

or reject traces. We adapt these definitions to include the branching-time setting where specifications

describe the execution graphs of processes [118, 6]. Our definitions are given as templates—they lay the

foundation for chapter 3 where we instantiate them w.r.t. a concrete operational model of monitors that

adheres to the requirements (i) and (ii) above. We:

• introduce the classical RV set-up assuming a single execution, overviewing the notions of monitora-

bility and instrumentation in the context of reactive systems, Section 2.1;

• review the `HML, a highly-expressive modal logic that we extend and adopt as our specification

formalism, Section 2.2.

Section 2.2 presents both the linear-time and branching-time semantics of the `HML. It gives a

full account of the logic and draws contrast between the two interpretations. This thesis adopts the

linear-time semantics of the `HML for the reasons discussed in the concluding section 2.5.

2.1 Runtime Verification

Traditional pre-deployment verification techniques have limited applicability to reactive applications.

Commonly-used practices, such as testing [181], only reveal the presence of errors [82], whereas ex-

haustive approaches such as model checking [141] are laborious [65] and often scale poorly due to

state explosion problems. Reactive settings pose even more challenges. For instance, static verification

techniques often rely on having access to the system source code or model, which is not necessarily

available when software is constructed from libraries or components that are subject to third-party

restrictions. Moreover, certain components may be offered as services that are not always known

pre-deployment but discovered dynamically at runtime. These aspects tend to increase the complexity

of software and the resources required to verify it, while at the same time, decreasing the time available

to conduct its verification.

10
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(a) Property 𝜑 describes the current execution trace of the SuS
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(b) Property 𝜑 describes the execution graph of the SuS

Figure 2.1. RV for the classical set-up with one execution trace

RV is a post-deployment technique that can complement static techniques to increase correctness assur-

ances about a program or SuS. It circumvents the obstacles of pre-deployment methods by dynamically

checking the current execution to determine whether the SuS satisfies or violates some correctness re-

quirement. These requirements are generally specified using a high-level formalism, e.g. logic, automata,

etc., to unambiguously specify properties about the behaviour of the SuS. RV synthesises correctness

specifications into monitors—computational entities that are instrumented with the SuS to analyse its

execution (expressed as a trace of events). Monitors typically analyse the trace incrementally up to the

current point of execution to reach a verdict. Synthesising monitors from correctness specifications

implies that, on some level, the meaning of a specification and the verdict that a synthesised monitor

declares should correspond. Figure 2.1a depicts the traditional RV set-up where a specification 𝜑 ( 1 ) is

synthesised into the monitor 𝑀𝜑 ( 2 ) that is instrumented with the SuS to analyse its execution as the

events 𝛼1,𝛼2 . . . ( 3 ) until a satisfaction (✓) or rejection (✗) verdict is reached by 𝑀𝜑 .

2.1.1 Specification Logics

Various specification languages are employed to describe correctness properties of the SuS, ranging

from temporal logics [36, 207, 210, 31, 118], to automata-based formalisms [24, 69, 197, 124, 166, 23] and

(extensions of) regular expression (RE) [115, 206, 63, 23, 176]. Logics and regular expressions provide

a ‘declarative’ way of expressing properties where specifications stipulate what to verify. Automata-

based formalisms, meanwhile, tend to have a more ‘imperative’, operational flavour that is close to

the verification technique, dictating how a property is verified. The former approaches benefit from

compositionality, since complex specifications can be easily constructed from simpler terms. For instance,

two formulae, 𝜑1 and 𝜑2, that express different requirements can be combined into a new specification,

𝜑1∧𝜑2, demanding that both formulae hold. This benefit also permeates to the verification layer, where

constituent parts of a specification (e.g. 𝜑1 and 𝜑2) may be verified independently. By contrast, automata-

based specification languages tend to lack these qualities. As an example, two automata 𝑀1 and 𝑀2

that respectively express the same requirements as the aforementioned formulae, 𝜑1 and 𝜑2, must be

intersected to describe the requirement equivalent to 𝜑1∧𝜑2. This makes automata-based specifications
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(b) Checking formulae at runtime against the current system execution

Figure 2.2. The interpretation of formal logics on system models and system executions

monolithic, cumbersome to work with, and prone to state blow-ups. Declarative specifications also

have an edge in terms of modularity: they make the formalism and verification technique amenable to

separate study and development (see section 2.1.3). In RV, this formalism-verification gap is bridged by a

synthesis procedure that is responsible for reconciling differences to preserve semantic correspondence.

For the reasons mentioned, this thesis looks to logics as property specification languages, as these are

also portable to other verification platforms, such as model checkers.

Temporal logics are generally categorised into two classes, based on their underlying notion of time [141,

156]. In linear-time logics such as LTL [141] and the `-calculus with a linear-time interpretation [6],

formulae describe the behaviour of sets of (possibly infinite) traces that a system model is able to generate.

From a temporal perspective, each computational step that a system performs is considered to have

one possible future. By contrast, branching-time logics such as computation tree logic (CTL) [141] and

the `HML [159, 2] describe graphs of the system execution whose states may (non-deterministically)

transition to many possible futures. Figure 2.2a (left) depicts a system execution graph that satisfies the

branching-time specification given in HML; 2.2a (right) shows a set of traces that satisfy the linear-time

specification given in LTL.

2.1.2 Monitors

Monitors are classified based on the timeliness with which execution traces are analysed [100, 25]. Online

monitors actively analyse events the SuS exhibits while it executes; this analysis is deferred after the

system terminates in the case of offline monitoring. Offline monitors have access to the complete trace,

which enables them to move forward or backward along the execution timeline. Their online counterpart

typically analyses the execution in a unidirectional fashion, discarding past events to keep the runtime
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analysis as lightweight as possible. Readers are referred to [100] for details.

The partial view of an execution that an online monitor has can be seen as a prefix of a larger (possibly

infinite) trace, or of a finite path within the computation graph of the SuS. We shall refer to finite or

infinite traces as finfinite traces [6]. A monitor is a machine (or a sequence recogniser [204, 166]), 𝑚,

that analyses this prefix and determines set of traces or process states of the SuS that it accepts and

rejects [8, 6]. The restriction on analysing finite traces stems from the online setting, where monitors are

constrained to partial views of runs of the SuS that are current, up to the latest event. One non-negotiable

requirement is that the verdicts flagged by monitors are irrevocable, since verdicts that are subject to

revision depending on future trace events are ephemeral, thus not dependable. These two aspects distil

the core monitor definitions found in the literature (e.g. [25, 35, 6]).

The set-ups of figure 2.1 are generalised by Aceto et al. [8] as a monitoring system, comprised of a

non-empty set of monitors, Mon, and two predicates, acc and rej, defined over monitors 𝑚 ∈ Mon,

process states, and finfinite traces. Monitors determine whether to accept or reject traces or processes

via acc and rej respectively. The interpretation of the trace prefix by acc and rej in definition 2.1 depends

on the linear-time or branching-time semantics of the formalism used to express properties.

Definition 2.1 (Linear-time and branching-time acceptance and rejection [8, adapted from Definition

3.1]). A monitor𝑚,

(i) for every process 𝑝 and finite prefix 𝑠:

• accepts (resp. rejects) 𝑝 along 𝑠 , denoted as acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)), if for all of its finfinite

continuations 𝑓 , acc(𝑚,𝑝,𝑠 𝑓 ) (resp.rej(𝑚,𝑝,𝑠 𝑓 ))
(ii) for every process 𝑝 and finfinite trace 𝑓 :

• accepts (resp. rejects) 𝑓 produced by 𝑝 , denoted acc(𝑚,𝑝, 𝑓 ) (resp. rej(𝑚,𝑝, 𝑓 )), if there exists a

finite prefix 𝑠 of 𝑓 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠))
• accepts (resp. rejects) 𝑝 along 𝑓 , denoted acc(𝑚,𝑝, 𝑓 ) (resp. rej(𝑚,𝑝, 𝑓 )), if there exists a finite

prefix 𝑠 of 𝑓 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)) ■

Point (i) of definition 2.1 captures the notion of irrevocable verdicts, where monitors pass judgements

w.r.t. trace prefixes and preserve it along all the (possibly infinite) trace continuations. It is worth

mentioning that standard finite automata do not satisfy requirement (i): they do not operate on infinite

traces and can transition from final to non-final states, which compromises verdict persistence. Point

(ii) demands that the analysis that monitors conduct is necessarily finite. It expresses the notions of

good and bad prefixes [155, 17]. Informally, a good prefix is a finite trace such that any of its infinite

extensions is accepted; dually, a bad prefix is a finite trace such that any of its infinite extensions is

rejected. Standard Büchi automata fail to meet condition (ii), since they require an infinite trace to be

read before an acceptance or rejection verdict, can be flagged.

2.1.3 Monitorability

Not all expressible properties can be runtime checked in an online RV setting that is limited to a single,

partial execution [25, 117, 94, 58]. For instance, the satisfaction of a (linear-time or branching-time) safety

property, i.e., ‘something bad does not happen’, cannot be determined by observing a finite trace, but its

violation can. Figure 2.2b (left) gives another example of a branching-time property that requires certain
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behaviour to hold from the same state. Clearly, one execution will never suffice to deduce whether such

a property holds.

This limitation is generally tackled in one of two ways. In the first approach, one either (i) restricts the

expressive power of the specification language by adapting formalisms such as REs (e.g. [115, 192, 23]) or

automata to describe finite executions (e.g. [68, 70, 176]), or (ii) redefines the semantics of existing logics

to reflect the limitations of the runtime setting (e.g. [36, 35, 34, 128, 203, 182, 45]). The latter approach

leaves the formalism unaltered and identifies subsets that can be verified at runtime (e.g. [118, 6, 8]).

Both strategies have their merits. The specification formalism in the former approach is closely linked

with the monitors, thereby facilitating certain aspects of correctness. Semantics that are bespoke to the

RV set-up, on the other hand, complicate its integration with other methods (e.g. model checking) that

use standard formalisms (e.g. LTL). For instance, Bauer et al. [35, 36] adopt this approach, altering the

semantics of LTL to assign the truth values ⊤ (satisfied), ⊥ (violated), and ? (inconclusive) to formulae

in their logic, LTL3. The second strategy preserves the full expressive power of the formalism. Isolating

the semantics of the formalism from the operational semantics of monitors makes it possible to establish

what aspects of the SuS need to be verified, agnostic of the technique used for the verification task.

Separating these concerns facilitates the construction of hybrid verification set-ups, where parts of a

property can be runtime checked, and other parts verified through more powerful techniques [9, 179].

One body of work adhering to the second method is by [118, 6, 8] which we adopt and build upon in this

thesis.

The second strategy also facilitates the study of monitorability. Monitorability concerns itself with

delineating the properties that can be runtime checked and those that can not [25, 117, 6]. It is the study of

the relationship between the semantics of the specification formalism on the one hand (i.e., satisfactions

and violations of logic formulae in our case), and the verdicts that are reached by monitors on the other

(i.e., acceptances and rejections). Monitorability relies on what a correct monitor for a given specification

is, which, in turn, establishes what it means for that specification to be monitorable. Apart from providing

the formal underpinning for monitor correctness [112, 111, 113, 160], monitorability instils a principled

approach to constructing RV tools by guiding the development of automated syntheses procedures that

generate monitors from specifications. Delimiting the monitorable properties from non-monitorable

ones carries other practical advantages. For instance, the synthesis procedure can be optimised to

generate monitors for monitorable properties only. In certain cases, syntactic characterisations of

monitorable properties can be determined (e.g. [6, 118, 58]), which improves the usability of RV tools that

reject non-monitorable properties via lightweight syntactic checks (e.g. [21, 221]). Most crucially, this

guarantees that non-rejected specifications generate monitors that are always able to reach meaningful

verdicts.

Aceto et al. [8] argue that monitorability comes in a spectrum which establishes a trade-off between

the guarantees that monitors provide, and the properties that can be monitored under these guarantees.

The least such non-negotiable guarantee is soundness, where the verdicts that monitors report do not

contradict the meaning ascribed to the monitored specification 𝜑 . We define the predicate sat(𝜑, 𝑓 ) to

denote that a finfinite trace 𝑓 satisfies 𝜑 ; analogously sat(𝜑,𝑝) denotes that a process 𝑝 satisfies 𝜑 .

Definition 2.2 (Linear-time and branching-time monitor soundness [8, adapted from Definition 3.3]). A

monitor𝑚 is sound,
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(i) for linear-time property 𝜑 if, for every process 𝑝 and finfinite trace 𝑓 :

• acc(𝑚,𝑝, 𝑓 ) implies sat(𝜑, 𝑓 ), and

• rej(𝑚,𝑝, 𝑓 ) implies ¬sat(𝜑, 𝑓 )
(ii) for branching-time property 𝜑 if, for every process 𝑝 and finfinite trace 𝑓 :

• acc(𝑚,𝑝, 𝑓 ) implies sat(𝜑,𝑝), and

• rej(𝑚,𝑝, 𝑓 ) implies ¬sat(𝜑,𝑝) ■

Monitors can easily fulfil the soundness condition by not producing a verdict. This calls for complete-

ness guarantees that relate to the verdicts that monitors can reach. These guarantees depend on the

requirements of the monitoring set-up. For example, a monitor that can reach a verdict at least once

even though it might miss other viable detections, may be adequate for certain cases. Other scenarios

could impose stricter constraints, such as being able to identify all possible satisfactions (satisfaction-

completeness) or all possible violations (violation-completeness) for a property [6]. Generally, the

stronger the completeness guarantees demanded, the smaller the set of monitorable properties (see [8]

for more details).

Definition 2.3 (Linear-time and branching-time monitor completeness [8, adapted from Definition 3.5]).

A monitor𝑚 is satisfaction-complete,

(i) for a linear-time property 𝜑 , if for all processes 𝑝 and finfinite traces 𝑓 :

• sat(𝜑, 𝑓 ) implies acc(𝑚,𝑝, 𝑓 ), and is violation complete if ¬sat(𝜑, 𝑓 ) implies rej(𝑚,𝑝, 𝑓 )
(ii) for a branching-time property 𝜑 , if for all processes 𝑝 and finfinite traces 𝑓 :

• sat(𝜑,𝑝) implies acc(𝑚,𝑝, 𝑓 ), and is violation complete if ¬sat(𝜑,𝑝) implies rej(𝑚,𝑝, 𝑓 )
A monitor is complete

1 for a property 𝜑 if it is both satisfaction-complete and violation-complete, and

partially-complete if it is either. ■

In their general framework, Aceto et al. [8] give a unifying account of existing notions of monitorability

for the linear-time domain over finfinite traces; monitorability for branching-time settings is studied

in [118, 6]. The authors show that soundness and the various grades of completeness guarantees produce

different monitorability definitions (e.g. informative monitorability, partially-complete monitorability,

etc.). Recall that monitorability establishes how a finite execution prefix is to be interpreted by a monitor

and correctly mapped to the property expressed by some specification 𝜑 . Intuitively, a monitor that

checks for property satisfactions analyses the execution to find one witness confirming that the property

holds. Dually, monitoring for property violations requires the monitor to find one counter witness

confirming that the property does not hold. More formally, a linear-time property is a language over

trace events, denoted as 𝑃lt. By analysing events from the trace, a monitor determines whether the

event sequence read so far constitutes the prefix of a word in the property language. Words in (resp. not

in) 𝑃lt denote property satisfactions (resp. violations). A branching-time property is a set of program

states, denoted as 𝑃bt, that correspond to the behaviour the system can exhibit. By analysing events, a

monitor determines whether the event sequence read so far constitutes a path leading to program states

described by the property. States in (resp. not in) 𝑃bt denote property satisfactions (resp. violations).

1As Aceto et al. [8] show, full monitor completeness is only possible for trivial properties, namely all the formulae that are

semantically equivalent to true or false.
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Figure 2.2b sketches how branching-time and linear-time properties would be runtime checked against

the current execution trace (cf. figure 2.2a that has access to complete models).

Aceto et al. [8] discuss that monitorability can be specified in terms of monitor soundness and different

levels of strictness of completeness that depend on the guarantees expected of monitors. The approach

taken in this body of work, by contrast to others in the field (e.g. [35, 34, 68, 24, 45, 203]), adheres to the

tenets of modular verification advocated earlier in section 2.1.3. The authors consider the `HML as their

touchstone specification formalism. The authors identify maximally-expressive (i.e., characterises all

semantically equivalent specifications) monitorable syntactic fragments of the `HML for the linear-time

interpretation of their logic. We adopt their framework, and instantiate definitions 2.1 to 2.3 under

specific completeness guarantees in chapter 3 w.r.t. a concrete operational model of monitors that builds

on theirs. Chapter 3, also formalises the definitions of the predicates acc and rej via an instrumentation

relation, followed by a synthesis procedure that generates correct monitors that can handle data. We

start by concretising the abstract predicates sat mentioned above in section 2.2.

2.1.4 Instrumentation for Online Monitoring

Instrumentation lies at the heart of runtime monitoring [164, 117, 25]. It refers to the extraction of

information from executing software and its reporting to monitors, following one of two approaches.

In the inline approach, instrumentation is implemented by manually implanting the SuS with tracing

instructions, or automatically, using aspect-oriented programming (AOP) [146] frameworks that in-

ject the instrumentation code with the system via source or object code weaving (e.g. AspectJ [147],

SpringAOP [223], BCEL [76], etc.). Inlining offers a number of benefits, such as timely detections of

anomalous behaviour and the ability to intervene and steer the system execution if required. Never-

theless, these qualities do not necessarily make inlining the ideal approach for monitoring large-scale

reactive systems. Despite its reputation for inducing low overhead, the synchronous coupling that

inlining creates with the SuS can impinge on the operation of the system [61, 51, 25, 68], e.g. slow runtime

analyses manifest as high response time latencies, faulty monitors may break the system, etc. Moreover,

certain kinds of monitoring errors, such as deadlocks [61] or component crashes [221], may be difficult

to detect since the monitoring logic shares the execution thread of the affected component. In cases

where the SuS sources or binaries are unavailable (e.g. closed-source components, licensing agreements,

third-party services, etc.), inlining cannot be used. Inlining is typically programming language-dependent,

which limits its application to heterogeneous components. It is also hard to undo once administered,

requiring restarts or redeployments of the SuS.

Outline instrumentation [100, 25] is an alternative approach to inlining, where the SuS and monitors

are encapsulated into respective concurrent entities [15]. It leverages a tracing infrastructure that

gathers information externally (e.g. DTrace [50], LTTng [80], Erlang Trace [57], OpenJ9 Trace [86]). This

minimal coupling between the SuS and monitors begets a number of advantages that are attuned to

the characteristics of reactive systems [153]. For instance, outline monitors can treat the SuS as a black

(or grey) box and only react to certain events exhibited in the system execution trace. Besides serving

the runtime analysis, the trace information can be leveraged to scale the instrumentation dynamically,

proportionate to the computational demands of the SuS. Since tracing frameworks do not necessitate

access to the SuS, it makes the set-up language agnostic. Additionally, monitors may be enabled and

disabled on demand without system redeployments or restarts, which is invaluable when profiling or
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live debugging concurrency bugs that emerge for particular execution paths. Decoupling the SuS from

monitors carries another advantage. It induces a degree of resiliency in the set-up in the forms of partial

failure (faulty monitors do not compromise the system, and vice versa) and monitor redundancy (a failed

monitor does not hamper other instances from monitoring replicas of the same component).

Tracing information reported by the instrumentation can assume different forms, and is often tailored

to specific uses. For instance, coarse-grained or aggregated data suffices for compiling usage statistics

or for application performance monitoring (APM) and tuning. Applications such as live debuggers,

auditing or verification tools require data as program events that advertise changes in the state of the

SuS. Our abstract definition of RV monitors from section 2.1.2 demands stringent guarantees from the

instrumentation, namely that the (i) trace events reported to monitors are consistent with the order in

which they are exhibited by the SuS, and (ii) that traces have no missing events.

The instrumentation determines how the SuS and monitor execution evolves as time progresses.

Synchronous monitoring interleaves the SuS-monitor execution such that both run in lock-step, i.e., the

system is paused until the monitor completes its analysis. Synchronous monitoring is implemented

using inlining [70, 13, 130, 148, 197, 88, 84]. Certain tools [60, 51, 52] externalise monitors as processes

that synchronise with the SuS on each event it exhibits. While their authors refer to these monitors as

‘outline’, we classify them as inline since the instrumentation must modify the system to inject monitor

synchronisation points. Asynchronous monitoring uses outline instrumentation, enabling the SuS to

execute unencumbered by monitor computation. To the best of our knowledge, relatively few instances

of asynchronous monitoring tools exist, some of which employ the Erlang tracing infrastructure to report

events to a central monitor that executes alongside the SuS [71, 221, 219, 113]. Figure 2.3 illustrates typical

monitor arrangements for the synchronous and asynchronous cases. Monitor 𝑀𝑄 is inlined as part of

process 𝑄 (2.3a), whereas tracer 𝑇𝑄 obtains the events of process 𝑄 by way of the tracing infrastructure

that acts as a middleware (2.3b). The events that tracer 𝑇𝑄 receives are, in turn, reported to monitor 𝑀𝑄

for analysis. The material in the rest of this thesis regards inline (resp. outline) instrumentation and

synchronous (resp. asynchronous) monitoring as synonymous.
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(a) Synchronous monitors via weaving
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(b) Asynchronous monitors via the tracing infrastructure

Figure 2.3. Inline (synchronous) and outline (asynchronous) instrumentation for process 𝑄
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In principle, the instrumentation composes monitors with the SuS to yield a monitored system [118]. A

monitored system could potentially manifest different behaviour to the unmonitored SuS—a product of

(i) the instrumentation method adopted [112], e.g. outline, and (ii) the assurances given by monitors [160],

e.g. passive monitors. Although core monitor concerns, such as correctness [210, 67, 70, 71, 68], effi-

ciency [207, 208, 209, 175, 96, 24, 63], security [102, 91], and even failure [34, 180, 31], have been treated to

different degrees in the RV literature, instrumentation has not been studied in its own right. This theme

recurs in particular RV tool development practices, where instrumentation is occasionally portrayed to

induce low overhead [95, 55, 68, 25, 100], albeit with no quantifiable backing [175, 209, 42, 61, 207, 99, 24]

(we elaborate on these arguments in chapter 7 and in particular, section 7.4).

A recent body of work [118, 112, 6, 8] is one of the few notable efforts that investigates monitors in

the context of an instrumented system set-up from a formal aspect. The operational definition of the

instrumentation given relates SuS and monitor states to produce a monitored system where monitors are

passive. Despite their passive role, [112] shows that certain monitors that behave inertly when considered

in isolation can still interfere with an instrumented system. For instance, it is natural to expect the

instrumentation not to prematurely terminate monitors before a verdict is flagged, but wait for their

internal computation to complete. However, too lengthy or divergent computations can slow or even

stall the SuS. The execution slowdown [26] observed in practice is a manifestation of this phenomenon,

and is one of the main drawbacks of synchronous (i.e., inline) approaches [61, 51, 25, 68]. Such subtle

interdependencies that arise between the SuS and monitors are not edge-case scenarios, but practical

issues that the design of monitoring tools must tackle from the outset. Particularly, [112, 6] make a strong

case that the definition of correct monitors needs to comprise the instrumentation. As far as we can

understand, the above-mentioned works that use inlining do not reconcile the gap between the monitor

formalisations at one end, and the instrumentation aspect in their ensuing prototype tools at the other

(e.g. [210, 67, 70, 71, 68, 207, 208, 209, 175, 96, 24, 63, 102, 91, 34, 180]).

2.2 The Hennessy-Milner Logic with Recursion

We overview our chosen logic [6, 8], `HML [159, 2], which we use to specify correctness properties.

The `HML is a reformulation of the highly-expressive modal `-calculus [150] that can embed other

prevalent logics, such as CTL and LTL [141], making it suitable to express a wide range of properties.

It has a branching-time semantics to specify properties about the execution graph of processes, and a

linear-time semantics (adapted from the modal `-calculus) describing properties of the current program

execution (see section 2.1.1). The logic presented in Aceto et al. [6, 8] can express regular properties,

which arguably limits its applicability to a broader setting where systems deal with data. We, therefore,

extend the `HML of op. cit. to a first-order setting, where logic formulae can specify properties that

reason about the data carried in trace events. Sections 2.3 and 2.4 recall the syntax and semantics of the

logic and formalise the concepts of traces and processes introduced in section 2.1.2.

2.3 The Syntax of `HML
d

Figure 2.4 shows our extension of `HML, called `HMLd. It assumes a set of external actions, 𝛼,𝛽 ∈Act,

together with a distinguished internal action 𝜏 ∉Act that represents one internal step of computation.

External actions range over values taken from some (potentially infinite) data domain, D. The `HMLd
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syntax also uses a denumerable set of propositional variables, 𝑋,𝑌 ∈ PVar. In addition to the standard

Boolean constructs, the logic can express recursive and least and greatest fixed point formulae, min𝑋 .(𝜑)
and max𝑋 . (𝜑), that bind the free occurrences of 𝑋 in 𝜑 . The existential and universal modalities, ⟨𝑥𝑥,𝑏⟩𝜑
and [𝑥𝑥,𝑏 ]𝜑 , express the dual notions of possibility and necessity respectively. We augment these two

modal constructs with symbolic actions, denoting them by (𝑥𝑥,𝑏), to enable reasoning on the data carried

by external actions. Symbolic actions are pairs consisting of data binders, 𝑥,𝑦 ∈ DVar, and decidable

Boolean constraint expressions, 𝑏,𝑐 ∈ BExp. Data binders also range over the domain D of data values,

and bind the free occurrences of 𝑥 in the expression 𝑏 of the modality and in the continuation formula

𝜑 . The set BExp, defined over D and DVar, consists of the usual Boolean operators, including, ¬ and

∧, together with a set of relational operators that depends on D, and which we leave unspecified. For

clarity, we omit writing the Boolean constraint expression 𝑏 when 𝑏 = tt, and use bold italicised lettering

to identify binders in symbolic actions.

In the sequel, the standard concepts of open and closed expressions, scoping, and formula equality up to

alpha-conversion are used. A formula is said to be guarded if every fixed point variable 𝑋 appears within

the scope of a modality that is itself in the scope of 𝑋 . For example, the formula max𝑋 . ( [𝑥𝑥 ]ff∧ [𝑦𝑦]𝑋 ) is

guarded, as is max𝑋 .
(
[𝑥𝑥 ] ( [𝑦𝑦 ]ff∧𝑋 )

)
, while [𝑥𝑥 ]max𝑋 . ( [𝑦𝑦 ]ff∧𝑋 ) is not.

`HML
d

Syntax

𝜑,𝜓 ∈ `HMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏 ]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | min𝑋 . (𝜑) | max𝑋 . (𝜑) | 𝑋

`HML
d

Linear-Time Semantics

Jtt,𝜎 Klt≜Act𝜔 Jff,𝜎 Klt≜ ∅

J⟨𝑥𝑥,𝑏 ⟩𝜑,𝜎 Klt≜
{
𝑡 | (∃𝑢. ∃𝛼. 𝑡 =𝛼𝑢 and 𝑏 [𝛼/𝑥]⇓tt and 𝑢 ∈ J𝜑 [𝛼/𝑥],𝜎 Klt)

}
J [𝑥𝑥,𝑏 ]𝜑,𝜎 Klt≜

{
𝑡 | (∀𝑢.∀𝛼. (𝑡 =𝛼𝑢 and 𝑏 [𝛼/𝑥]⇓tt) implies 𝑢 ∈ J𝜑 [𝛼/𝑥],𝜎 Klt)

}
J𝜑∨𝜓,𝜎 Klt≜ J𝜑,𝜎 Klt∪J𝜓,𝜎 Klt J𝜑∧𝜓,𝜎 Klt≜ J𝜑,𝜎 Klt∩J𝜓,𝜎 Klt

Jmin𝑋 . (𝜑),𝜎 Klt≜
⋂{

𝑇 | J𝜑,𝜎 [𝑋 ↦→𝑇 ]Klt ⊆𝑇
}

Jmax𝑋 . (𝜑),𝜎 Klt≜
⋃{

𝑇 |𝑇 ⊆ J𝜑,𝜎 [𝑋 ↦→𝑇 ]Klt
}

J𝑋,𝜎 Klt≜𝜎 (𝑋 )

`HML
d

Branching-Time Semantics

Jtt,𝜌 Kbt≜ Prc Jff,𝜌 Kbt≜ ∅

J⟨𝑥𝑥,𝑏 ⟩𝜑,𝜌 Kbt≜
{
𝑝 | (∃𝑞. ∃𝛼. 𝑝 𝛼

=⇒𝑞 and 𝑏 [𝛼/𝑥]⇓tt and 𝑞 ∈ J𝜑 [𝛼/𝑥],𝜌 Kbt)
}

J [𝑥𝑥,𝑏 ]𝜑,𝜌 Kbt≜
{
𝑝 | (∀𝑞.∀𝛼. (𝑝 𝛼

=⇒𝑞 and 𝑏 [𝛼/𝑥]⇓tt) implies 𝑞 ∈ J𝜑 [𝛼/𝑥],𝜌 Kbt)
}

J𝜑∨𝜓,𝜌 Kbt≜ J𝜑,𝜌 Kbt∪J𝜓,𝜌 Kbt J𝜑∧𝜓,𝜌 Kbt≜ J𝜑,𝜌 Kbt∩J𝜓,𝜌 Kbt

Jmin𝑋 . (𝜑),𝜌 Kbt≜
⋂{

𝑃 | J𝜑,𝜌 [𝑋 ↦→ 𝑃]Kbt ⊆ 𝑃
}

Jmax𝑋 . (𝜑),𝜌 Kbt≜
⋃{

𝑃 | 𝑃 ⊆ J𝜑,𝜌 [𝑋 ↦→ 𝑃]Kbt
}

J𝑋,𝜌 Kbt≜ 𝜌 (𝑋 )

Figure 2.4. Syntax, linear-time and branching-time semantics for the `HML
d
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2.4 The Semantics of `HML
d

The linear-time interpretation of `HMLd is given by the denotational semantic function J−Klt that maps

a formula to a set of executions. Executions (or traces) are infinite sequences of external system actions

that abstractly represent complete system runs. We reserve the metavariables 𝑡,𝑢 ∈Act𝜔 to range over

infinite traces, 𝑇 ⊆ Act𝜔 to range over sets of infinite traces, and use 𝛼𝑡 to denote an infinite trace

that starts with 𝛼 and continues with 𝑡 . Finite traces, 𝑠,𝑟 ∈Act∗, represent prefixes of infinite or finite

executions.

The function J−Klt uses valuations, 𝜎 : PVar→ 2Act
𝜔

, to define the semantics inductively on the

structure of formulae. The value 𝜎 (𝑋 ) is the set of traces that are assumed to satisfy 𝑋 . In the definition

of J−Klt, modal formulae are interpreted w.r.t. symbolic actions. A symbolic action (𝑥𝑥,𝑏) describes a set

of external system actions, referred to as an action set. An action 𝛼 is in this set when the data value it

carries satisfies the Boolean constraint expression 𝑏 that is instantiated with the applied substitution

[𝛼/𝑥], i.e., 𝑏 [𝛼/𝑥] ⇓ tt (see figure 2.4). The existential modality ⟨𝑥𝑥,𝑏⟩𝜑 denotes all the traces 𝛼𝑢 where 𝛼 is

in the action set (𝑥𝑥,𝑏) and 𝑢 satisfies the continuation 𝜑 [𝛼/𝑥]. Dually, [𝑥𝑥,𝑏 ]𝜑 denotes all the traces 𝛼𝑢

that, if prefixed by any 𝛼 from the action set (𝑥𝑥,𝑏), 𝑢 then satisfies 𝜑 [𝛼/𝑥]. Note that if 𝛼 is not in the

action set, the trace 𝛼𝑢 satisfies [𝑥𝑥,𝑏 ]𝜑 trivially. The set of traces satisfying the least (resp. greatest)

fixed point formulae min𝑋 . (𝜑) (resp.max𝑋 . (𝜑)) is the intersection (resp. union) of all the pre-fixed

(resp. post-fixed) point solutions, 𝑇 ⊆Act𝜔 , of the function induced by the formula 𝜑 .

The branching-time interpretation of `HMLd, denoted by J−Kbt, is defined over process states of a

labelled transition system (LTS) [145]. A LTS is a triple, ⟨Prc,(Act∪{𝜏}),−→⟩, consisting of a set of pro-

cess states, 𝑝,𝑞 ∈Prc, a set of actions including 𝜏 , and a transition relation, −→ ⊆Prc×(Act∪{𝜏})×Prc.

The variable ` ∈Act∪{𝜏} is reserved for external or internal actions, and 𝑃 ⊆ Prc for sets of processes.

We use the suggestive notation 𝑝
`
−→ 𝑝′ to denote labelled state transitions, ⟨𝑝,`,𝑝⟩ ∈ −→ , and 𝑝 ̸

`
−→

to mean ¬(∃𝑝′ ·𝑝
`
−→ 𝑝′). Weak transitions, 𝑝 ( 𝜏−→)∗𝑝′, are denoted as 𝑝 =⇒𝑝′, whereas 𝑝

𝛼
=⇒𝑝′ is

written in lieu of 𝑝 =⇒ · 𝛼−→ · =⇒𝑝′, referring to 𝑝′ as the 𝛼-derivative of 𝑝 . A transition sequence,

𝑝
𝛼1
=⇒ ···

𝛼𝑛
=⇒𝑝′, is compactly written as 𝑝

𝑠
=⇒𝑝′, where 𝑠 =𝛼1 · ··𝛼𝑛 is a finite trace of external actions. We

say that a process 𝑝 generates the trace 𝑡 =𝛼1𝛼2 · ·· if there is an infinite sequence 𝑝0,𝑝1,𝑝2, . . . of processes

such that 𝑝 =𝑝0 and 𝑝0
𝛼1
=⇒𝑝1

𝛼2
=⇒𝑝2 · ··.

Figure 2.4 also defines the branching-time semantics of `HMLd via the function J−Kbt that uses

valuations 𝜌 : PVar→ 2Prc. Most cases follow the linear-time counterpart; the main differences are w.r.t.

modal formulae. Existential modalities, ⟨𝑥𝑥,𝑏 ⟩𝜑 , require at least one 𝛼-derivative of a process 𝑝 for some

𝛼 in the action set (𝑥𝑥,𝑏) to satisfy 𝜑 . Its dual, [𝑥𝑥,𝑏 ]𝜑 , requires all the 𝛼-derivatives of 𝑝 labelled by the

actions in the set defined by (𝑥𝑥,𝑏) to satisfy 𝜑 .

Since the interpretation of closed formulae does not depend on the environment 𝜎 or 𝜌 , we may

use J𝜑 Klt and J𝜑 Kbt in lieu of J𝜑,𝜎 Klt and J𝜑,𝜌 Kbt respectively. We also write J𝜑 K instead of J𝜑 Klt or

J𝜑 Kbt whenever the correct semantic interpretation can be inferred from the surrounding context or is

unimportant. A trace 𝑡 (resp. process 𝑝) satisfies (the closed) formula 𝜑 when 𝑡 ∈ J𝜑 Klt (resp. 𝑝 ∈ J𝜑 Kbt),

and violates 𝜑 when 𝑡 ∉ J𝜑 Klt (resp. 𝑝 ∉ J𝜑 Kbt). Unless otherwise indicated, we assume that all formulae

considered are closed. To facilitate our exposition in this section and chapter 3, we let D=Z, and fix the

set of operators used in BExp to ¬, ∧ and =. Chapter 4 considers the general case where the data carried

by external actions can consist of composite data types.
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Definition 2.4 (Linear-time and branching-time formula satisfaction). The predicates sat(𝜑, 𝑓 ) and

sat(𝜑,𝑝) assumed in section 2.1.3 can now be defined. Since the linear-time interpretation of `HMLd

given in figure 2.4 assumes an infinite domain, sat(𝜑, 𝑓 ), is restricted to infinite traces, 𝑡 .

sat(𝜑,𝑡)≜ 𝑡 ∈ J𝜑 Klt sat(𝜑,𝑝)≜𝑝 ∈ J𝜑 Kbt ■

Example 2.1 (Interpretation and reasoning on data). Consider the formula:

[𝑥𝑥,𝑥 = 0]ff (𝜑1)

The symbolic action (𝑥𝑥,𝑥 = 0) defines the singleton set, {0} ⊂ Z, of external system actions. In the

linear-time interpretation, modal formulae [𝑥𝑥,𝑏 ]𝜑 , state that, for any trace prefix 𝛼 in the action set

(𝑥𝑥,𝑏), the trace continuation𝑢 must satisfy 𝜑 . However, no trace satisfies ff, i.e., ∀𝑢.𝑢∉JffKlt. This means

that traces that do not violate formula 𝜑1 are those starting with actions 𝛼 ∉ {0}. The interpretation

under the branching-time semantics is similar: [𝑥𝑥,𝑏 ]𝜑 requires that all the 𝛼-derivatives of a process

𝑝 , where 𝛼 is in the action set (𝑥𝑥,𝑏), reach some state 𝑝′ that satisfies 𝜑 . Since 𝑝′ ∉ JffKbt for any 𝑝′,

process 𝑝 satisfies 𝜑1 only when it exhibits actions other than 0; this includes the deadlocked process

that performs no action. ■

Example 2.2 (Comparison). Consider the two formulae 𝜑2 and 𝜑3, together with the trace 𝑡1 = (0.1)𝜔

and the (non-deterministic process) given in CCS syntax [178], 𝑝1 = rec𝑋 . (0 .1 .𝑋 +0 .0 .𝑋 +0 .nil). Note

that in particular, 𝑝1 produces the infinite trace 𝑡1.

[𝑥𝑥,𝑥 = 0] [𝑦𝑦,𝑦 = 0]ff(𝜑2) [𝑥𝑥,𝑥 = 0] (⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩tt) (𝜑3)

While 𝑡1 ∈ J𝜑2Klt, 𝑝1 ∉ J𝜑2Kbt because 𝑝1 performs the transition 𝑝1
0

=⇒ 0 .𝑝1 along one branch, and

the derived process state 0 .𝑝1 ∉ J [𝑦𝑦,𝑦 = 0]ffKbt (see example 2.1). Under the linear-time interpreta-

tion, the equality J⟨𝑦𝑦,𝑏 ⟩tt∨⟨𝑦𝑦,¬𝑏 ⟩ttKlt = JttKlt holds for every symbolic action (𝑦𝑦,𝑏). In our case,

(𝑦𝑦,𝑦 = 0) and (𝑦𝑦,𝑦 ≠ 0) in formula 𝜑3 define the complementary action sets {0} and Z \ {0} respec-

tively. Now, every infinite trace must have a first element 𝛼 that is either 𝛼 ∈ {0} or 𝛼 ∈ Z \ {0}.
This means that J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKlt = JttKlt. From the semantic definitions of figure 2.4, one

can also deduce that J [𝑥𝑥,𝑏 ] ttK = JttK under both interpretations. As a result, 𝜑3 is equivalent to tt

under the linear-time semantics, and thus, 𝑡1 ∈ J𝜑3Klt for all traces 𝑡1. In the branching-time setting,

J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKbt≠JttKbt. One witness for this inequality is the process nil, where nil∈JttKbt,

but nil ∉ J⟨𝑦𝑦,𝑦 = 0⟩tt∨⟨𝑦𝑦,𝑦 ≠ 0⟩ttKbt since nil ̸𝛼−→ . In fact, the transition 𝑝1
0

=⇒ nil does not fulfil the

semantic condition of 𝜑3 that all 𝛼-derivatives of 𝑝1, where 𝛼 ∈ {0}, reach a state 𝑝′1 that satisfies the

continuation formula (clearly, nil does not). Consequently, 𝑝1 ∉ J𝜑3Kbt. Note that the binders 𝑦𝑦 in

⟨𝑦𝑦,𝑦 = 0⟩tt and ⟨𝑦𝑦,𝑦 ≠ 0⟩tt of formula 𝜑3 have different scopes. ■

Example 2.3 shows how `HML can encode the core operators of LTL, a temporal logic which is widely-

adopted by the RV community, and that most tooling efforts employ as their specification formalism

(e.g. [35, 36, 34, 45, 31, 128, 208, 210, 203]).

Example 2.3 (Expressiveness). The core LTL operators, next and until, can be encoded thus [141]:

X𝜑 ≜ ⟨𝑥𝑥 ⟩tt 𝜑 U𝜓 ≜min𝑌 .
(
𝜓 ∨ (𝜑∧⟨𝑥𝑥 ⟩𝑌 )

)
■



2 Preliminaries · 22

Despite its widespread use, LTL has limited expressiveness. For instance, it cannot describe properties

such as ‘every even position in the execution satisfies some proposition p’ [225, 8]. Such properties can be

easily expressed in `HMLd (see example 3.3 on page 25).

2.5 Discussion

Runtime monitoring is amenable to lightweight verification settings where traditional approaches cannot

be used (e.g. expensive, not scalable). Despite the advantages it offers, the technique suffers from limited

expressiveness, where certain properties cannot be runtime checked. This constraint arises from the

partial view that monitors have of the SuS, which is limited to a single and finite execution—one of the

possible paths the system follows at runtime. Monitorability provides a principled method to identify

properties that can be monitored from those that cannot. This, in turn, gives a precise meaning of

what it means to monitor for a property correctly. Monitorability is underpinned by the notion of a

monitor [8]: a machine that analyses finite event sequences to accept (acc) or reject (rej) finfinite traces

or process states of the SuS w.r.t. specific guarantees. We expect two least guarantees, namely that

(i) the verdicts that monitors report do not contradict the meaning ascribed to specifications (soundness),

and (ii) under some criterion, the monitor can perform detections (completeness). We adopt the unified

monitorability view of Aceto et al. [8], where soundness and completeness are defined operationally in

terms of the predicates acc and rej; these predicates (definition 2.1), together with definitions 2.2 and 2.3

are concretised in chapter 3.

This chapter also discusses the instrumentation that composes monitors with the SuS in inline (syn-

chronous) or outline (asynchronous) fashion. In spite of its importance to RV, the instrumentation is

given limited consideration in the literature, with much of the work focussing on the monitors, studied

in a vacuum [210, 67, 70, 71, 68, 207, 208, 209, 175, 96, 24, 63, 102, 91, 34, 180, 31]; Aceto et al. [8] together

with [118, 6] are few notable exceptions that give the instrumentation a central role. Particularly, Aceto

et al. [8] shows that passive monitors can still produce side effects when instrumented with the SuS.

The authors make a strong case that the definitions of monitorability and monitor correctness should

incorporate the instrumentation.

The ongoing line of work by [1, 118, 3, 4, 5, 6, 7] studies the branching-time `HML in the context of RV

and hybrid approaches [9], and parts of the results have been instantiated in a number of tools, i.e., the

set-up of figure 2.1b. Readers are referred to [21, 219, 220, 221, 53, 51, 52, 113] for more details. In this thesis,

we adopt the linear-time interpretation of `HML where specifications express properties on the current

system execution (figure 2.1a). Example 2.3 shows that the logic easily embeds other logics and can

express a wider range of properties; this gives us a good level of generality in our results. The aforecited

tools focussing on the branching-time interpretation of the `HML employ the same operational model

of monitors given in [118, 6], which we extend in chapter 3. As a result, our synthesis procedure can

generate executable monitor code from linear-time specifications that is identical to monitors obtained

from branching-time specifications. This portability makes our subsequent results of chapters 6 and 7

applicable to the tools mentioned, i.e., [21, 219, 220, 221, 53, 51, 52, 113].
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Properties may be expressed using different formalisms. We adopt the linear-time `HML that describes

properties about the current execution trace (refer to section 2.2). Section 2.1.3 establishes that the

runtime setting limits what properties can be monitored for under the constraints of a single, incomplete

trace that is incrementally extended as the execution of the SuS unfolds. This chapter instantiates the

concepts introduced there. It pins down a formal operational model of monitors whose description

can be executed. We give concrete definitions for the acceptance and rejection predicates, acc and rej,

w.r.t. the irrevocable verdicts that these monitors can reach. Our definitions make use of a synchronous

instrumentation relation that composes the monitors and SuS, dictating how these verdicts are reached

at runtime. Using acc and rej, we formalise the notions of monitor soundness and completeness to recall

the monitorability definition for the linear-time `HML [6, 8], together with two maximally-expressive

monitorable logic fragments (refer to section 2.5 for reasons why we adopt the linear-time `HML).

Our work builds on the theoretical foundations of Aceto et al. [6, 8] that give an operational model

of regular monitors and a compositional synthesis procedure that generates correct monitors from

the aforementioned monitorable fragments of `HML. We lift the results of that study to a first-order

setting and extend the monitoring model and synthesis procedure with symbolic actions introduced in

section 2.2 to account for data payloads carried by trace events. Our adaptation of the monitor synthesis

closely follows the one of op. cit., giving us high assurances that the corresponding monitors are correct.

The modular approach followed by the authors has been translated to different implementations [21,

219, 221, 13, 114], including detectEr [221], a RV tool that targets programs written for the Erlang/OTP

platform. One aspect that Aceto et al. [6, 8] do not tackle is how the SuS and monitors can be composed

asynchronously to mitigate the issues with lock-step execution and monitor inlining mentioned in

section 2.1.4. This chapter addresses this gap and gives an alternative instrumentation that disconnects

the SuS from its monitors. Crucially, our asynchronous instrumentation definition remains compatible

with the requirements that Aceto et al. [6, 8] expect of the monitoring model, making their correctness

results transferable to our framework as well. We:

(i) demonstrate how properties on the current execution can be flexibly expressed via the linear-time

`HMLd, Section 3.1;

(ii) overview our extended monitoring model and the synchronous instrumentation relation of Aceto

et al. [6, 8], Section 3.2;

(iii) define soundness, completeness, and monitorability w.r.t. the logic of (i) and models of (ii), and

recall the monitorable fragments of the linear-time `HMLd, Section 3.3;

(iv) outline our adaptation of the monitor synthesis procedure that generates parallel monitors from

monitorable linear-time `HMLd fragments, Section 3.4;

23
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𝑞1𝑞2 𝑞3 𝑞4
-1

𝚥 ∈ Z

1

0

𝚤 ∈ N

Figure 3.1. Token server that issues integer identification tokens to client programs

(v) define an instrumentation relation that composes monitor and SuS processes in asynchronous

fashion, Section 3.5.

3.1 Trace Properties

Figure 3.1 depicts a generalisation of process 𝑝1 from example 2.2, 𝑞1 = 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 ).
The process 𝑞1 models a reactive token server that issues client programs with identification tokens that

they use as an alias to write logs to a remote logging server. Clients request an identifier by issuing the

command 0, which the server then fulfils by replying with a new token, 𝚤 ∈N. Since the server is itself a

program that also uses the remote logging service, it is launched with its (reserved) identification token

1. Figure 3.1 shows that from its initial state 𝑞1, the token server either: (i) starts up with the token 1

and transitions to 𝑞3, where it awaits incoming client requests, or (ii) fails to start and transitions with

a status of −1 to the sink 𝑞2, thereafter exhibiting undefined behaviour, 𝚥 ∈ Z. There are a number of

properties we want executions of this token server to observe.

Example 3.1 (Necessity). One rudimentary property that the current execution of the server 𝑞1 should

uphold is that ‘no failure occurs at start up’. This safety requirement is expressed as follows:

[𝑥𝑥,𝑥 =−1]ff (𝜑4)

The symbolic action (𝑥𝑥,𝑥 = −1) defines the singleton set {−1} ⊂ Z of external system actions. This

means that in order for server traces not to violate formula 𝜑4, they must start with actions 𝛼 ∉ {−1}.
The set of traces 1.(0.N)𝜔 exhibited by 𝑞1 satisfies this property, whereas −1.Z𝜔 does not. ■

Example 3.2 (Necessity and possibility). Further to the stipulation of example 3.2, we require that ‘the

server is initialised with the identification token 1’, expressed as:

[𝑥𝑥,𝑥 =−1]ff∧⟨𝑥𝑥,𝑥 = 1⟩tt (𝜑5)

The conjunct [𝑥𝑥, 𝑥 = −1]ff guards against traces of 𝑞1 exhibiting failure when loading; ⟨𝑥𝑥, 𝑥 = 1⟩ tt
asserts that the trace exhibits 1 at start-up, indicating a successful initialisation of the server. Formula 𝜑5

is satisfied exactly by server traces of the form 1.N𝜔 . ■

The symbolic actions of examples 3.1 and 3.2 define sets of external actions by specifying literal values

(e.g. 1 and −1). Action sets can be more generally defined via constraint expressions that refer to other

data variables within the same scope.
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Example 3.3 (Recursion). Amongst the executions satisfying 𝜑5 are those where the server accidentally

returns its identifier token 1 in reply to client requests. We, therefore, demand that ‘the server private

identification token 1 is not leaked in client replies’. Formula 𝜑6 expresses this recursive property in a

general way, i.e., it does not hardcode the token value 1. Note that the Boolean constraint expressions

𝑏 = tt are elided.

[𝑥𝑥 ]max𝑋 .
(
[𝑦𝑦 ] ( [𝑧𝑧,𝑥 = 𝑧 ]ff∧ [𝑧𝑧,𝑥 ≠ 𝑧 ]𝑋 )

)
(𝜑6)

The symbolic action (𝑥𝑥, tt) in the first necessity defines the set of external actions Z. Its binder, 𝑥𝑥 ,

binds the variable 𝑥 in max𝑋 .
(
[𝑦𝑦 ] ( [𝑧𝑧,𝑥 = 𝑧 ]ff∧ [𝑧𝑧,𝑥 ≠ 𝑧 ]𝑋 )

)
(marked in 𝜑6). For some initial server

action 𝛼 ∈ Z, applying the substitution [𝛼/𝑥] to this continuation, followed by a single unfolding of the

recursion variable, yields the residual formula:

[𝑦𝑦 ]
(
[𝑧𝑧,𝛼 = 𝑧 ]ff∧ [𝑧𝑧,𝛼 ≠ 𝑧 ]max𝑋 .

(
[𝑦𝑦 ] ( [𝑧𝑧,𝛼 = 𝑧 ]ff∧ [𝑧𝑧,𝛼 ≠ 𝑧 ]𝑋 )

) )
(𝜑 ′6)

Necessity [𝑦𝑦] maps 𝑦𝑦 to the second server action 𝛽 ∈Z in the trace, i.e., [𝛽/𝑦]. Applying the substitution

[𝛽/𝑦] to [𝑧𝑧, 𝛼 = 𝑧 ]ff and [𝑧𝑧, 𝛼 ≠ 𝑧 ]max𝑋 .
(
[𝑦𝑦 ] ( [𝑧𝑧, 𝛼 = 𝑧 ]ff ∧ [𝑧𝑧, 𝛼 ≠ 𝑧 ]𝑋 )

)
leaves both sub-formulae

unchanged, since 𝑦𝑦 binds no variables in either. For the third server action 𝛾 , the modalities [𝑧𝑧,𝛼 =𝑧] and

[𝑧𝑧,𝛼 ≠ 𝑧 ] map 𝑧𝑧 to 𝛾 . Formula 𝜑6 is violated, ff, when the constraint 𝛼 = 𝑧 [𝛾/𝑧] holds. Crucially, a fresh

scope for data variables is created upon each unfolding of 𝑋 , such that 𝑦𝑦 and 𝑧𝑧 can be mapped to new

values. By contrast, the value in 𝑥𝑥 is substituted for once in 𝜑 ′6 and remains fixed when 𝑋 is unfolded.

Formula 𝜑6 compares actions at every odd position in the trace against the one at the head. When 𝜑6 is

interpreted over all the possible traces that the token server generates upon successful initialisation, the

binder 𝑥𝑥 in the modal construct [𝑥𝑥 ] becomes instantiated to the value 1. This ensures that, in particular,

the set of traces 1.(0.{𝚤 ∈N | 𝚤 ≠ 1})∗ .(0.1).N𝜔 are violating. Note that this property is not not expressible

in LTL. ■

3.2 Synchronous Runtime Monitoring

Monitors may be viewed as processes via the syntax given in figure 3.2. This syntax differs from its

regular counterpart of Aceto et al. [6, 8] in that it augments the prefixing construct with symbolic actions,

(𝑥𝑥,𝑏) (cf. section 2.2). Besides the prefixing, external choice, and recursion constructs of CCS [178], the

syntax of figure 3.2 includes disjunctive, ⊕, and conjunctive, ⊗, parallel composition. We use the symbol

⊙ to refer to both ⊕ and ⊗ when needed. Monitor verdict states, 𝑣 ∈Vrd, are expressed as yes, no, and

end respectively denoting the accept, reject and inconclusive verdicts.

Figure 3.2 outlines the behaviour of monitors, where the transition rules mRec, mChsL, and its

symmetric case mChsR (omitted), are standard. Rule mAct describes the analysis that monitors perform,

where the binder 𝑥𝑥 in the symbolic action (𝑥𝑥,𝑏) is mapped to an external system action 𝛼 , yielding the

substitution [𝛼/𝑥] that is applied to the decidable Boolean constraint expression 𝑏. The monitor (𝑥𝑥,𝑏) .𝑚
analyses 𝛼 only if the instantiated constraint 𝑏 [𝛼/𝑥] is satisfied, whereupon 𝛼 is substituted for the free

occurrences of the variable 𝑥 in the body𝑚. When the premise 𝑏 [𝛼/𝑥] does not hold, the monitor action



3 Monitors and Instrumentation · 26

Monitor Syntax

𝑚,𝑛 ∈MonF 𝑣 | (𝑥𝑥,𝑏) .𝑚 | 𝑚+𝑛 | 𝑚⊕𝑛 | 𝑚⊗𝑛 | rec𝑋 . (𝑚) | 𝑋

𝑣 ∈VrdF yes | no | end

Monitor Small-Step Semantics

mVrd
𝑣

𝛼−→ 𝑣
mAct

𝑏 [𝛼/𝑥] ⇓ tt

(𝑥𝑥,𝑏) .𝑚 𝛼−→𝑚[𝛼/𝑥]
mChsL

𝑚
𝛼−→𝑚′

𝑚+𝑛 𝛼−→𝑚′

mTauL
𝑚

𝜏−→𝑚′

𝑚⊙𝑛 𝜏−→𝑚′ ⊙𝑛
mPar

𝑚
𝛼−→𝑚′ 𝑛

𝛼−→𝑛′

𝑚⊙𝑛 𝛼−→𝑚′ ⊙𝑛′
mVrdE

end⊙ end 𝜏−→ end

mDisYL
yes⊕𝑚 𝜏−→ yes

mDisNL
no⊕𝑚 𝜏−→𝑚

mConYL
yes⊗𝑚 𝜏−→𝑚

mConNL
no⊗𝑚 𝜏−→ no

mRec
rec𝑋 . (𝑚) 𝜏−→𝑚[rec𝑋 . (𝑚)/𝑋 ]

Monitor Instrumentation

iMon
𝑝

𝛼−→ 𝑝′ 𝑚
𝛼−→𝑚′

𝑚 ⊳ 𝑝
𝛼−→𝑚′ ⊳ 𝑝′

iTer
𝑝

𝛼−→ 𝑝′ 𝑚 ̸𝛼−→ 𝑚 ̸𝜏−→

𝑚 ⊳ 𝑝
𝛼−→ end ⊳ 𝑝′

iAsyP
𝑝

𝜏−→ 𝑝′

𝑚 ⊳ 𝑝
𝜏−→𝑚 ⊳ 𝑝′

iAsyM
𝑚

𝜏−→𝑚′

𝑚 ⊳ 𝑝
𝜏−→𝑚′ ⊳ 𝑝

Figure 3.2. Syntax, small-step semantics for parallel monitors, and synchronous instrumentation

𝛼 is disabled. Verdict irrevocability is modelled by mVrd, where once in a verdict state 𝑣 , any action can

be analysed by monitors without altering 𝑣 . Rule mPar enables parallel sub-monitors to transition in

lock-step when they analyse the same action 𝛼 , while mVrdE consolidates parallel inconclusive verdicts.

The rest of the rules (omitting the obvious symmetric cases) cater to the internal reconfiguration of

monitors. For instance, rules mDisYL and mDisNL state that in disjunctive parallelism, yes supersedes

the verdicts of other monitors, whilst no does not affect the verdicts of other monitors; mConYL and

mConNL express the dual case for parallel conjunctions. Finally, mTauL and its symmetric analogue

permit sub-monitors to execute internal reconfigurations independently.

Monitors execute together with the SuS to analyse its actions. Figure 3.2 recalls the instrumentation

transition relation defined in Aceto et al. [6] that composes a monitor 𝑚 with a system process 𝑝 to

yield a monitored system, denoted as 𝑚 ⊳ 𝑝 . The relation ⊳ is parametric w.r.t. the transition semantics of

processes and monitors, providing the latter supports the inconclusive verdict end. This instrumentation

definition gives monitors a passive role, whereby𝑚 ⊳ 𝑝 transitions via an external action only when 𝑝

transitions with that action. Rules iMon and iTer capture this notion. iMon describes the analysis that

monitors perform. It dictates that whenever a process 𝑝 transitions via 𝛼 to some 𝑝′ and the monitor

can analyse 𝛼 and transition to𝑚′, the monitored system transitions in lock-step to𝑚′ ⊳ 𝑝′. Monitors

that are unable to analyse actions, nor unfold internally, are terminated by the instrumentation with an
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inconclusive state, as iTer states (note that iTer still permits the system process to resume its execution).

The remaining rules, iAsyP and iAsyM, enable system and monitor processes to transition internally.

Example 3.4 (Synchronous instrumentation). The monitor (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
that rejects traces of the form 1.0∗ .1.Z𝜔 , is instrumented with the server of figure 3.1. When the server

leaks its identification token 1, this monitor reaches a rejection verdict along the transitions:

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ rec𝑋 . (0 .𝚤 .𝑋 )

=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

0−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

1−→ no ⊳ rec𝑋 . (0 .𝚤 .𝑋 ) 𝜏−→ ···

However, for a different execution where the server replies to a client with the identification token 2,

the same monitor flags an inconclusive verdict.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1.0.2
=⇒ end ⊳ rec𝑋 . (0 .𝚤 .𝑋 ) 𝜏−→ ···

The concluding transition, · ·· 2−→ end ⊳ rec𝑋 . (0 .𝚤 .𝑋 ), is obtained via the rule iTer, at which point the

token value 2 issued by the server cannot be analysed by the monitor (it can only analyse either the

action 0 or 1). Observe that the monitor does not interfere with the operation of the server. Henceforth,

the instrumented system transitions exclusively through iMon, whereby any action that the server

exhibits is analysed by the monitor (rule mVrd) which persists in flagging the same verdict end. Rule

mVrd enables our monitors to meet the verdict irrevocability requirement (i) of definition 2.1. ■

3.3 Monitorable Logic Fragments

Accept and reject verdicts establish the monitoring counterpart to satisfactions and violations of `HMLd

formulae. Our definition of the accept and reject predicates, acc and rej, from definition 2.1 is given

for finfinite (i.e., finite or infinite) traces. Since the linear-time semantics of the `HMLd is defined over

infinite traces, we instantiate definition 2.1 of chapter 2 w.r.t. to this domain using our operational model

of monitors and the instrumentation relation of figure 3.2.

Definition 3.1 (Linear-time acceptance and rejection [6, adapted from Definition 3.3]). A monitor𝑚,

(i) for every process 𝑝 and finite prefix 𝑠:

• accepts (resp. rejects) 𝑝 along 𝑠 , denoted as acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠)), if 𝑚 ⊳ 𝑝
𝑠

=⇒ yes ⊳ 𝑝′

(resp.𝑚 ⊳ 𝑝
𝑠

=⇒ no ⊳ 𝑝′) for some 𝑝′

We say that ‘𝑚 accepts 𝑠’ to mean ∀𝑝. acc(𝑚,𝑝,𝑠), and ‘𝑚 rejects 𝑠’ to mean that ∃𝑝. rej(𝑚,𝑝,𝑠).
(ii) for every process 𝑝 and infinite trace 𝑡 :

• accepts (resp. rejects) 𝑡 produced by 𝑝 , denoted acc(𝑚,𝑝,𝑡) (resp. rej(𝑚,𝑝,𝑡)), if ∃𝑠 . ∃𝑢 such that

𝑡 = 𝑠𝑢 and acc(𝑚,𝑝,𝑠) (resp. rej(𝑚,𝑝,𝑠))



3 Monitors and Instrumentation · 28

We abuse notation and use acc(𝑚,𝑡) as a shorthand for acc(𝑚,𝑝,𝑡); similarly, rej(𝑚,𝑡) is used to

denote rej(𝑚,𝑝,𝑡). ■

Our concrete formalisation of soundness that instantiates definition 2.2 of chapter 2 uses the predicate

sat given earlier in definition 2.4. Recall that the predicate sat(𝜑,𝑡) determines whether an infinite trace

𝑡 satisfies the linear-time `HMLd formula 𝜑 , i.e., 𝑡 ∈ J𝜑 K. We restate the soundness as follows.

Definition 3.2 (Linear-time soundness [6, adapted from Definition 4.1]). A monitor 𝑚 is sound for a

linear-time formula 𝜑 ∈ `HMLd if, for every infinite trace 𝑡 :

• acc(𝑚,𝑡) implies 𝑡 ∈ J𝜑 K, and

• rej(𝑚,𝑡) implies 𝑡 ∉ J𝜑 K. ■

As section 2.1.3 argues, soundness is the least requirement expected from RV monitors since it ensures

that verdicts reached by monitors do not contradict the corresponding logic semantics. Recall that

different grades of completeness may be deemed adequate (refer to section 2.1.3), depending on the

requirements of RV set-up. These requirements inform the definition of monitorability that identifies

the logic fragments that can be accordingly runtime checked. We focus on partially-complete monitors

which are satisfaction-complete or violation-complete for the formulae they monitor for, but are not

required to be both.

Definition 3.3 (Linear-time completeness [6, adapted from Definition 4.1]). A monitor𝑚 for a linear-time

formula 𝜑 ∈ `HMLd and for every trace 𝑡 is,

• satisfaction-complete if 𝑡 ∈ J𝜑 K implies acc(𝑚,𝑡), and

• violation complete if 𝑡 ∉ J𝜑 K implies rej(𝑚,𝑡).
A monitor𝑚 is complete for a linear-time formula 𝜑 if it is both satisfaction-complete and violation-

complete for 𝜑 , and partially-complete if it is either. ■

Monitorability for linear-time `HMLd formulae follows from definitions 3.2 and 3.3.

Definition 3.4 (Monitorability [6, adapted from Definition 4.10]). A formula 𝜑 ∈ `HMLd is monitorable

for satisfaction (resp. violation) iff there exists a monitor 𝑚 that is a sound and satisfaction-complete

(resp. violation-complete) monitor for 𝜑 . Formula𝑚 is partially-monitorable when it is monitorable for

satisfaction or for violation. ■

Definition 3.5 gives the two fragments of the linear-time `HMLwith data (`HMLd) that are partially

monitorable [6]: minHMLd, which is monitorable for satisfaction, and maxHMLd, which is monitorable

for violation. Our definition shows the fragments extended with the data predicates presented in

section 2.2 for the `HMLd.

Definition 3.5 (min and max fragments of the `HMLd [6, adapted from Definition 4.11]). The least and

greatest fixed point monitorable fragments of the `HMLd are respectively:

𝜑,𝜓 ∈minHMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏 ]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | min𝑋 . (𝜑) | 𝑋

𝜑,𝜓 ∈maxHMLdF tt | ff | ⟨𝑥𝑥,𝑏 ⟩𝜑 | [𝑥𝑥,𝑏 ]𝜑 | 𝜑∨𝜓 | 𝜑∧𝜓 | max𝑋 . (𝜑) | 𝑋
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Both fragments are maximally-expressive, i.e., for any 𝜑 ∈ `HMLd, if 𝜑 monitorable for satisfaction

(resp. violation), then there exists some𝜓 ∈minHMLd (resp.𝜓 ∈maxHMLd) such that J𝜑 K= J𝜓 K. ■

This means that up to logical equivalence, minHMLd is the largest fragment of the `HMLd that is

monitorable for satisfactions; dually, maxHMLd is the largest fragment that is monitorable for violations.

Example 3.5 (Non-monitorable linear-time properties). The property ‘the token server must eventually

issue the identification token 100’, expressible in minHMLd as 𝜑7=min𝑋 .(⟨𝑥𝑥,𝑥 =100⟩tt∨⟨𝑥𝑥,𝑥≠100⟩𝑋 ), is

not monitorable for violations. For if it were, a monitor𝑚𝜑7 that runtime checks for 𝜑7 should be able to

flag a violation after analysing some finite execution 𝑠 that does not contain the token 100. However, our

token server will always be in a position to extend any such witness 𝑠 that 𝑚𝜑7 observes with one new

action that exhibits the value 100, which would satisfy 𝜑7. Formula 𝜑7 is nevertheless monitorable for

satisfactions since the monitor only commits itself to flag a satisfaction once the token server provides

the required witness. Dually, formula 𝜑6 of example 3.3 i.e., [𝑥𝑥 ]max𝑋 .
(
[𝑦𝑦] ( [𝑧𝑧,𝑥 =𝑧]ff∧ [𝑧𝑧,𝑥 ≠𝑧]𝑋 )

)
, is

not monitorable for satisfactions, since the server can always present the monitor𝑚𝜑6 for formula 𝜑6

with a violating trace continuation after𝑚𝜑6 flags a satisfaction.

The liveness LTL formula GF𝜑 that describes the behaviour ‘𝜑 holds infinitely often’ is not moni-

torable [36]. For if a corresponding monitor exists, then this must check that at every position in the

execution, F𝜑 holds. For any finite trace prefix 𝑠 where GF𝜑 is declared satisfied, 𝑠 can be extended

by one action, obliging the monitor to check for F𝜑 anew. Note that GF𝜑 is expressible in `HMLd as

max𝑋 .
(
min𝑌 . (𝜑∨⟨𝑥 ⟩𝑌 ) ∧ [𝑥 ]𝑋

)
, but in neither of the monitorable fragments of definition 3.5. ■

The formulae seen thus far in examples 2.1, 2.2 and 3.1 to 3.3 are in maxHMLd. We adopt maxHMLd

in the sequel and chapter 4, noting that the forthcoming synthesis procedure of section 3.4 generates

identical monitors from minHMLd and maxHMLd formulae.

3.4 Monitor Synthesis

Our adaptation L−M of the synthesis procedure for regular monitors [6, 8] is given in definition 3.6.

It generates monitors for 𝜑 ∈ minHMLd ∪maxHMLd, following the inductive structure of formulae.

The translation for truth and falsehood, and the least and greatest fixed point and recursion variable

constructs is direct; disjunction and conjunction are transformed to their parallel counterparts. Modal

constructs map to deterministic external choices, where the left summand handles the case where a

system action 𝛼 is in the set described by the symbolic action (𝑥𝑥,𝑏), and the right summand, the case

where 𝛼 is not in this set. This embodies the duality of possibility and necessity: when 𝛼 is not in the

action set (𝑥𝑥,𝑏), the formula ⟨𝑥𝑥,𝑏 ⟩𝜑 is violated, whereas [𝑥𝑥,𝑏 ]𝜑 is trivially satisfied.

Definition 3.6 (Monitor synthesis procedure for minHMLd and maxHMLd).

LttM= yes LffM= no

L⟨𝑥𝑥,𝑏 ⟩𝜑 M= (𝑥𝑥,𝑏) .L𝜑 M+ (𝑥𝑥,¬𝑏) .no L [𝑥𝑥,𝑏 ]𝜑 M= (𝑥𝑥,𝑏) .L𝜑 M+ (𝑥𝑥,¬𝑏) .yes

L𝜑∨𝜓 M= L𝜑 M⊕ L𝜓 M L𝜑∧𝜓 M= L𝜑 M⊗ L𝜓 M

Lmin𝑋 . (𝜑)M

Lmax𝑋 . (𝜑)M

}
= rec𝑋 . (L𝜑 M) L𝑋 M=𝑋

■



3 Monitors and Instrumentation · 30

Definition 3.6 makes use of the disjunctive, ⊕, and conjunctive, ⊗, parallel composition constructs of

figure 3.2. These constructs are a convenient calculus for building monitors in a compositional fashion,

making it possible to view a monitor as a system of sub-monitors that check for different sub-formulae.

One byproduct of this construction is that it facilitates the definition of our synthesis procedure and

ensuing executable monitor code (see section 4.2). The parallel transition rules mDisYL, mDisNL, mConYL,

and mConNL (and their symmetric counterparts) obviate the need for the instrumentation rule iTer

that terminates monitors, and consequently, the use of the monitor transition rule mVrdE and the

inconclusive verdict end. Note that our model can handle formulae such as, ⟨𝑥𝑥,𝑥 = 1⟩ tt∧ ⟨𝑥𝑥,𝑥 ≠ 1⟩ tt,
where the monitor generated,

(
(𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠ 1) .no

)
⊗
(
(𝑥𝑥,𝑥 ≠ 1) .yes+ (𝑥𝑥,𝑥 = 1) .no

)
, together

with the rules (mConNL and mConNR in this case) make the verdict flagged (i.e., no) in line with the

semantics of the logic.

Our monitor model assumes an infinite domain of data elements that—combined with the variable

binding and lexical scoping induced by symbolic actions—makes monitors not possible to determinise in

general (see example 3.6). At runtime, the view of monitors is limited to a single finite trace prefix, one

of the many possible paths the SuS takes while executing. We exploit this partial view and use parallel

monitors as a best-effort strategy to unfold and lazily analyse the events for the current trace observed.

This may be seen as ‘determinising on the fly’, and contrasts with static determinisation that computes

all the possible paths that a monitor can take a priori, only to follow a specific one at runtime.

Parallel monitors naturally handle the scoping and binding of variables between different sub-monitor

hierarchies by following the syntactic structure of formulae. The rules mDisYL, mDisNL, mConYL,

mConNL, and their analogues ensure that the sub-monitor hierarchies that result from ⊕ and ⊗ are kept

compact by terminating superfluous monitor branches. Using flat, automata-like approaches to manage

the variable scoping and binding aspects (e.g. register automata [143, 124, 104]) makes it hard to reason

about monitors compositionally. These challenges concerning data binding and scoping do not arise in

the framework of Aceto et al. [6, 8] that study regular monitors.

Example 3.6 (Non-determinisable monitors). Consider the property about our token server of figure 3.1

stating that ‘when the server behaves erratically, it always generates distinct error codes’. This can be

expressed as the maxHMLd formula:

[𝑥𝑥,𝑥 =−1]max𝑋 .

(
[𝑦𝑦 ]

(
max𝑌 . ( [𝑧𝑧,𝑦 = 𝑧 ]ff∧ [𝑧𝑧,𝑦 ≠ 𝑧 ]𝑌 ) ∧𝑋

) )
(𝜑8)

Formula 𝜑8 cannot be synthesised into a monitor that is determinisable. The binder 𝑦𝑦 binds the

variables 𝑦 inside the greatest fixed point max𝑌 . ( [𝑧𝑧,𝑦=𝑧]ff∧[𝑧𝑧,𝑦≠𝑧]𝑌 ), creating a dependency between

the inner scope under variable 𝑌 and the outer scope under 𝑋 (marked by arrows). This dependency

obliges the monitors to reserve an unbounded number of variables (𝑦 in 𝜑8), one for each action analysed.

It is necessary so that the values of all the different instantiations of 𝑦𝑦 can be compared against future

values in the trace through the recursive sub-formula max𝑌 . ( [𝑧𝑧,𝑦=𝑧]ff∧[𝑧𝑧,𝑦≠𝑧]𝑌 ). Unfolding 𝜑8 once

highlights the variables 𝑦 (𝛼-renamed to 𝑦1 and 𝑦2 for clarity) that track every action in the execution.
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[𝑦1𝑦1 ]
(
max𝑌 . ( [𝑧𝑧,𝑦1 = 𝑧 ]ff∧ [𝑧𝑧,𝑦1 ≠ 𝑧 ]𝑌 )∧

max𝑋 .

(
[𝑦2𝑦2 ]

(
max𝑌 . ( [𝑧𝑧,𝑦2 = 𝑧 ]ff∧ [𝑧𝑧,𝑦2 ≠ 𝑧 ]𝑌 ) ∧𝑋

) ))
(𝜑 ′8)

Each of 𝑦1,𝑦2, . . . is respectively instantiated with the server error code value carried by actions in a

trace 𝛼1,𝛼2, . . .. This makes the size of the monitor dependent on the length of its input, which results in

a monitor whose number of states can grow indefinitely. ■

Example 3.7 (Parallel monitors). Synthesising formula 𝜑5 produces the monitor𝑚𝜑5 :

L𝜑5M= L [𝑥𝑥,𝑥 =−1]ff∧⟨𝑥𝑥,𝑥 = 1⟩ttM= L [𝑥𝑥,𝑥 =−1]ffM⊗ L⟨𝑥𝑥,𝑥 = 1⟩ttM

=
(
(𝑥𝑥,𝑥 =−1) .no+ (𝑥𝑥,𝑥 ≠−1) .yes

)
⊗
(
(𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠ 1) .no

)
(𝑚𝜑5 )

When analysing the server traces −1.Z𝜔 , monitor𝑚𝜑5 reduces to no⊗no via the rule mPar. Its premises

are obtained by applying the mChsL and mAct to the left sub-monitor, and mChsR and mAct to the

right sub-monitor, giving:

(𝑥𝑥,𝑥 =−1) .no+ (𝑥𝑥,𝑥 ≠−1) .yes −1−→ no and (𝑥𝑥,𝑥 = 1) .yes+ (𝑥𝑥,𝑥 ≠ 1) .no −1−→ no

The monitor no ⊗ no then transitions internally, no ⊗ no 𝜏−→ no, via either mConNL or mConNR.

Analogously,𝑚𝜑5 reaches yes when analysing the server traces 1.N𝜔 . Recall that from a verdict state, a

monitor can always analyse future actions via mVrd, flagging the same outcome. The behaviour of𝑚𝜑5

corresponds to the property that 𝜑5 describes. ■

Example 3.8 (Lazy unfolding). Consider the recursive monitor𝑚𝜑6 synthesised from 𝜑6:

(𝑥𝑥) .rec𝑋 .

(
(𝑦𝑦) .

( (
(𝑧𝑧,𝑥 = 𝑧) .no+ (𝑧𝑧,𝑥 ≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧,𝑥 ≠ 𝑧) .𝑋 + (𝑧𝑧,𝑥 = 𝑧) .yes

) ))
(𝑚𝜑6 )

For the server traces 1.0.2.0.1.(0.N)𝜔 , 𝑚𝜑6 instantiates the binder 𝑥𝑥 to the value 1 at the head, and

applies the substitution [1/𝑥] to the residual monitor, giving:

rec𝑋 .

(
(𝑦𝑦) .

( (
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑋 + (𝑧𝑧, 1= 𝑧) .yes

) ))
(𝑚′𝜑6

)

Hereafter, 𝑚′𝜑6
unfolds continually, ensuring that no action carries the value 1 observed at the head of

the trace. At every even position, 𝑦𝑦 is instantiated to 0, whereas the binders 𝑧𝑧 in each of the parallel sub-

monitors compare the value carried by actions occurring at odd trace positions against 1. Monitor𝑚′𝜑6

reaches the verdict no via these reductions:

𝑚′𝜑6

𝜏−→ (𝑦𝑦) .
( (
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑚′𝜑6

+ (𝑧𝑧, 1= 𝑧) .yes
) )

(𝑚′′𝜑6
)

0−→
(
(𝑧𝑧, 1= 𝑧) .no+ (𝑧𝑧, 1≠ 𝑧) .yes

)
⊗
(
(𝑧𝑧, 1≠ 𝑧) .𝑚′𝜑6

+ (𝑧𝑧, 1= 𝑧) .yes
)

(𝑚′′′𝜑6
)

2−→ yes⊗𝑚′𝜑6

𝜏−→𝑚′𝜑6

𝜏−→𝑚′′𝜑6

0−→𝑚′′′𝜑6

1−→ no⊗yes 𝜏−→ no

𝚤−→ no

𝚤−→ ···
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For the satisfying server traces 1.(0.{𝚤 ∈N | 𝚤 ≠ 1})𝜔 ,𝑚′𝜑6
visits the state yes⊗𝑚′𝜑6

indefinitely, where

𝑚′𝜑6
supersedes the uninfluential verdict yes following the rule mConYL. ■

Readers may find it instructive to consult the definition of satisfaction-complete and violation-complete

monitors for the branching-time interpretation of the `HML, [6, Definition 5.1]. The latter definition

demands that, whenever a monitor is presented with a satisfying (resp. violating) process state, it reaches

an accept (resp. reject) verdict. Similarly, definition 3.3 above states that, whenever the monitor is

presented with a satisfying (resp.violating) trace, it reaches an accept (resp. reject) verdict. Yet, there is a

subtle distinction in the way the execution trace of the SuS is interpreted. In the branching-time setting,

where the logic describes properties of execution graphs, a monitor may not reach an acceptance (or

rejection) verdict about some 𝜑 . This happens when the current execution of the SuS does not provide

evidence of satisfying (or violating) behaviour such that it enables the monitor to come to a definitive

conclusion. In such cases, the monitor withholds its judgement (by flagging end) since there might

be other unseen executions of the SuS that possibly contain the evidence required. By contrast, the

linear-time interpretation of `HMLd concerns the current execution. The current execution provides

the monitors that we synthesise from our monitorable fragments (see definition 3.6) with sufficient

information to enable them to always flag a satisfaction or violation verdict.

3.5 Asynchronous Runtime Monitoring

The instrumentation relation of figure 3.2 is synchronous [118, 6], entwining the monitors and SuS

such that the monitored system, 𝑚 ⊳ 𝑝 , evolves as a single entity. Synchronous instrumentation is

often implemented as inlined monitor code and is the de facto technique for monolithic settings where

systems execute in a single thread. For the reasons given in section 2.1.4, the benefits of inlining are less

suited to reactive settings where the SuS is comprised of multiple independently executing processes.

Asynchronous instrumentation decouples monitors from SuS by introducing an intermediary buffer (or

queue) where trace events can be deposited in non-blocking fashion. Decentralised monitoring set-ups

replicate this arrangement: each monitor is equipped with a uniquely-addressable queue that it uses to

analyse events independent of other monitors and out-of-sync with the SuS. This makes the technique

less invasive and limits the side effects of monitors, e.g. a slow analysis does not impede the system

from resuming its execution. Outline monitors are an embodiment of this approach, where individual

monitor queues are connected to the tracing infrastructure that provides independent streams of system

events (see section 2.1.4). One feature distinguishing synchronous and asynchronous instrumentation is

that the latter form gives rise to multiple executions as a consequence of separating the monitor and

SuS processes. Chapter 5 details the complications that arise in asynchronous decentralised set-ups

and gives an algorithm that guarantees the correct order of events for each monitor. In this section,

we reformulate the instrumentation semantics of figure 3.2 and define the asynchronous interaction

between monitors and system processes.

Figure 3.3 gives the transition rules for our asynchronous instrumentation relation,𝑚 ⊳^ ⊳𝑝 . It assumes

a FIFO queue of unbounded length, ^. We use the cons operator : and write 𝛼 :^ to denote a queue of

arbitrary length with head 𝛼 , and ^ :𝛼 to denote a queue of arbitrary length with 𝛼 at its tail. An empty

queue is denoted by Y. Same as the instrumentation given in [118, 6], our relation 𝑚 ⊳^ ⊳ 𝑝 is parametric

w.r.t. the transition semantics of processes and monitors, also relegating monitors to a passive role. The
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aiPrc
𝑝

𝛼−→ 𝑝′

𝑚 ⊳^ ⊳ 𝑝
𝛼−→𝑚 ⊳^ :𝛼 ⊳ 𝑝′

aiMon
𝑚

𝛼−→𝑚′

𝑚 ⊳𝛼 :^ ⊳ 𝑝
𝜏−→𝑚′ ⊳^ ⊳ 𝑝

aiAsyP
𝑝

𝜏−→ 𝑝′

𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚 ⊳^ ⊳ 𝑝′

aiAsyM
𝑚

𝜏−→𝑚′

𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚′ ⊳^ ⊳ 𝑝

Figure 3.3. Small-step semantics for asynchronous instrumentation

rules aiPrc and aiMon capture the asynchronous operation of the system and monitors. Rule aiPrc

always enables system processes 𝑝 to transition to some 𝑝′ via an action 𝛼 that is deposited in the

queue, i.e., ^ :𝛼 . An action 𝛼 from the queue 𝛼 :^ is taken out by a monitor whenever it can analyse

𝛼 , transitioning silently to 𝑚′, as aiMon indicates. The remaining rules, aiAsyP and aiAsyM, allow

processes and monitors to transition internally.

The rules of figure 3.3 highlight the minimal interference that monitors have. Rule aiPrc states that

a monitored system 𝑚 ⊳^ ⊳ 𝑝 exhibits actions as soon as processes perform them; monitors, however,

conduct their asynchronous analysis silently. One may consider an alternative formulation of aiPrc

and aiMon that reverses the roles of processes and monitors in the monitored system𝑚 ⊳^ ⊳ 𝑝 . In this

definition, processes can exhibit external actions 𝛼 via aiPrc, but contrary to our rules of figure 3.3, the

monitored system transitions internally, i.e., 𝑚 ⊳^ ⊳ 𝑝
𝜏−→𝑚 ⊳^ :𝛼 ⊳ 𝑝′. The conclusion of rule aiMon

would then state that the monitored system emits external system actions only when these have been

analysed by monitors, i.e.,𝑚 ⊳𝛼 :^ ⊳𝑝
𝛼−→𝑚′ ⊳^ ⊳𝑝 . While this variation seems innocuous (asynchrony is

still preserved), the rules subtly alter the behaviour of the monitored system. Concretely, slowdowns (or

deadlocks) in monitors delay (or prevent) the monitored system from reporting actions to the external

environment promptly. This counters our aim of fully decoupling the SuS and monitors to induce

minimal interference.

Finally, the definitions of figure 3.3 omit the analogue to iTer (cf. figure 3.2), which terminates

monitors that cannot analyse events or transition internally. Rule iTer is required in a synchronous

setting, otherwise, the system cannot progress when the monitor is stuck. From a formal standpoint,

eliding this rule in the asynchronous case does not affect the overall behaviour, as the system can

progress regardless of whether a monitor is terminated or cannot analyse actions. Yet, terminating

redundant monitors is crucial for implementing tools that minimise the performance impact monitors

have on the system. Rule aiTer below accomplishes this task, providing a basis upon which the garbage

collection in our decentralised instrumentation algorithm of chapter 5 is built.

aiTer
𝑚 ̸𝛼−→ 𝑚 ̸𝜏−→

𝑚 ⊳𝛼 :^ ⊳ 𝑝
𝜏−→ end ⊳ Y ⊳ 𝑝

Example 3.9 (Asynchronous instrumentation). Monitor (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 =0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
from

example 3.9 is instrumented with the token server of figure 3.1. When the server leaks its identification

token 1, a rejection verdict can be reached as follows:
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(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

𝜏
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

0−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y :0 ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

1−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ no ⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋 ) 𝜏−→ ···

This transition sequence depicts the case where the token server advances by one step, and waits for

the monitor to catch up and analyse the action deposited in the queue ^ before proceeding with the next

transition (i.e., ^ emulates a single-place buffer). It is but one of various interleaved executions that the

monitored system can exhibit. We give it to elucidate how the intermediary queue ^ that decouples

the token server from its monitor, evolves as the latter effects its analysis. The execution obtained is

similar to the synchronous run given in example 3.4, albeit interleaved with extra internal transitions

performed by the monitor to reach a state where it is ready to analyse the next action. The following run

shows the token server executing ahead and completing one request-response cycle before the monitor

commences its analysis:

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y : 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

0−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 :0 ⊳ 𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

1−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1.0: 1 ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1.0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 0.1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ (𝑦𝑦,𝑦 = 0) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 1 ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 )

𝜏−→ no ⊳ Y ⊳ 0 .𝚤 .rec𝑋 . (0 .𝚤 .𝑋 ) 0−→ ···

The last five 𝜏-transitions showcase asynchronous instrumentation, which permits monitors to analyse

the events accumulated in the queue independently of the server. Yet, the price of this benefit is paid in

terms of possible delays when flagging verdicts. ■

Example 3.10 (Monitor termination). For an alternate run where the token server emits the trace

1.0.2.0.3 . . ., the monitor of examples 3.4 and 3.9 gets stuck, as it cannot analyse actions that carry
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values other than 0 or 1. While unanalysed actions accumulate in the instrumentation queue, the server

execution is not hampered from progressing.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1.0.2
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 2 ⊳ rec𝑋 . (0 .𝚤 .𝑋 )

0.3
=⇒ (𝑦𝑦,𝑦 = 0) .rec𝑋 .

(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
+ (𝑦𝑦,𝑦 = 1) .no ⊳ 2.0.3 ⊳ rec𝑋 . (0 .𝚤 .𝑋 ) 𝜏−→ ···

In practice, the steadily increasing queue size is detrimental to the runtime performance, and rule

aiTer is used to prematurely terminate the stuck monitor.

(𝑥𝑥,𝑥 = 1) .rec𝑋 .
(
(𝑦𝑦,𝑦 = 0) .𝑋 + (𝑦𝑦,𝑦 = 1) .no

)
⊳ Y ⊳ 1 .rec𝑋 . (0 .𝚤 .𝑋 ) +−1 .rec𝑌 . ( 𝚥 .𝑌 )

1.0.2
=⇒ end ⊳ Y ⊳ rec𝑋 . (0 .𝚤 .𝑋 ) 𝜏−→ ···

In principle, the asynchrony of our instrumentation naturally safeguards the SuS from problematic

monitors (e.g. the divergent monitors explored in [112]). Observe that this does not necessarily apply in

practice. For instance, events can accumulate in the queue when the monitor is slow to analyse them. This

can induce considerable overhead that indirectly affects the applications being monitored. Section 7.2.2

demonstrates such an occurrence, wherein an asynchronous centralised monitor is inefficient to the

point that it crashes the SuS. ■

3.6 Discussion

Organising the RV set-up into distinct components with cleanly delineated responsibilities is the core

theme of this chapter. The formalism, in our case, a logic, provides a language through which properties

can be expressed independently of the underlying verification technique. RV monitors are instrumented

with the SuS and tasked with runtime checking properties against the trace that the system exhibits while

executing. Monitorability bridges these two aspects: satisfactions and violations of properties in the

logic on the one hand, and acceptances and rejections flagged by monitors on the other [8]. It establishes

what it means for a monitor to be correct, which in turn, determines the fragments of the logic that can

be runtime checked. This correspondence between these two distinct semantics can be mechanised into

an automated synthesis procedure that generates correct monitors from logic formulae [113].

This modular design [6, 8] is reflected in our approach. We choose a logic—the highly-expressive linear-

time `HMLd that describes properties of the current execution—and show how properties that reason on

the data carried by trace events can be flexibly specified. We establish an operational model of parallel

monitors [6] extended with data predicates, that fulfils two requirements, namely that (i) monitors

analyse finite trace prefixes, and (ii) produce irrevocable accept or reject verdicts about these traces.

Together with the instrumentation relation [6], this model suffices to concretely define the notions of

trace acceptance and rejection, given by the predicates acc and rej. Monitor soundness and completeness

are specified in terms of acc and rej, and a definition of monitorability for partially-complete monitoring

follows as a result. Our compositional synthesis procedure translates monitorable linear-time `HMLd

fragments to parallel monitors comprised of sub-monitors that check for corresponding sub-formulae.

We define an asynchronous instrumentation relation alternative to the one of Aceto et al. [6, 8] to
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decouple the execution of the monitors and SuS. Our definition follows the same assumptions as their

synchronous instrumentation, making it compatible with that framework.

One distinct advantage that this separation of concerns has over other bodies of work (e.g. [210,

67, 70, 68, 24, 63, 34, 197]) when it comes to tool construction is that every layer mentioned above is

directly mappable to modular code. This provides high assurances that the correctness results obtained

in theory are transferred to the implementation. Besides correctness, modularity makes it possible

to reuse previously-established results and by extension, existing tools. For instance, our framework

easily supports the monitorable fragments of the branching-time `HMLd since the respective synthesis

procedure of [118, Definition 7] generates monitors described in a subset of the monitor calculus and

operational semantics given in figure 3.21. The instrumentation also benefits since the same synthesised

monitor (code) can be instrumented with the SuS in synchronous or asynchronous modes. We highlight

the indispensability of this aspect in section 4.7 and showcase it in chapter 7.

The asynchronous instrumentation we give in section 3.5 fits well the reactive systems setting. It keeps

the SuS and monitors separate, in line with the concurrency-oriented programming tenets [19], where

different responsibilities are organised into independent concurrent units. This fine-grained concurrent

design increases the potential for parallelisation since the monitor code is not embedded into the SuS.

Our monitored system, 𝑚 ⊳^ ⊳ 𝑝 , that results from asynchronous instrumentation preserves the reactive

qualities of the uninstrumented SuS:

• the queue ^ enables the SuS to execute without waiting on monitors (responsive, example 3.9),

• monitors can fail with minimal impacts on the SuS (resilient, example 3.10)

• monitors only analyse the events communicated by the instrumentation over the queue ^ (message-

driven, examples 3.9 and 3.10)

Asynchronous instrumentation also opens the possibility for the monitored system to exhibit elastic

behaviour. While this is not evident in our simplified system set-ups of examples 3.9 and 3.10, we detail

how elasticity is attained via our decentralised monitoring algorithm of chapter 5.

1This approach is, in fact, already implemented in the detectEr tool.
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Developing the theoretical foundations of runtime monitoring in a modular approach provides a blueprint

against which RV tools can be systematically implemented and evolved. As section 3.6 argues, delin-

eating the key components of the RV set-up not only facilitates their translation to code with minimal

adaptation but gives increased assurances that such translations are correct. In addition, limiting the

assumptions that each RV aspect makes on others (e.g. adopting a general logic that embeds other

less-expressive ones, decoupling the logic from the verification method, using a common monitor calcu-

lus, etc.) makes it possible to reuse existing results and tools to assemble verification set-ups that suit

particular requirements. This chapter details how each RV aspect of the model developed in chapter 3

can be mapped into its implementation equivalent. Figure 4.1a outlines the different components of

our theoretical set-up and their implementation counterparts we present in this chapter, figure 4.1b

(highlighted). While Erlang is our implementation language of choice (see discussion in section 1.2), the

techniques in this chapter are not particularly tied to actor-oriented frameworks (e.g. Akka), but can

also be applied to monolithic programs (Java, Python, etc.). We:

(i) augment the notion of symbolic actions given in section 2.2 with pattern matching, enabling the

logic and monitors to reason on composite data types, which we use to define a simple model of

events that capture the actions performed by processes, Section 4.1;

(ii) concretise the synthesis procedure stated in definition 3.6 to produce executable Erlang monitor

code, Section 4.2;

(iii) encode the small-step rules given in figure 3.2 as an algorithm that operates on monitors generated

by our synthesis, Section 4.3;

(iv) generalise the synchronous and asynchronous instrumentation relations of figures 3.2 and 3.3 to

support selective process instrumentation, Section 4.4;

(v) detail an implementation of the synchronous instrumentation definition of (iv) based on source-

level weaving, Section 4.5.

Our subsequent case study in section 4.6 demonstrates how properties can be flexibly specified to

instrument and runtime check third-party concurrent applications built on top of the Erlang OTP

middleware.

4.1 Revisiting the Data Model

We revise our definition of symbolic actions introduced section 2.2 to fit the Erlang use-case, where data

can consist of composite types, such as tuples and lists [19, 57]. Let ℓ ∈ L be a finite set of action labels,

and 𝑑1,𝑑2, . . . be data values taken from a set of data domains, D =
⋃

𝑖∈N D𝑖 (e.g. integers, PIDs, tuples,

37
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minHMLd and maxHMLd

fragments, Definition 3.5

minHMLd and maxHMLd

synthesis, Definition 3.6

`HML monitorable

fragments [118, Definition 6]

`HML

synthesis [118, Definition 7]

Common monitor calculus, Figure 3.2

Monitor operational semantics, Figure 3.2

Synchronous

instrumentation, Figure 3.2

Asynchronous

instrumentation, Figure 3.3

CCS process model, Section 2.4

trace model trace model

linear-time branching-time

(a) Modular theoretical RV set-up of chapters 2 and 3

Revisited maxHMLd

fragment, Section 4.1

minHMLd and maxHMLd

synthesis, Figure 4.3

detectEr RV toolchain

[113, 21, 219, 221, 56, 220]

detectEr RV toolchain

[113, 21, 219, 221, 56, 220]

Common subset of Erlang syntax, Figure 4.3

Monitoring algorithm, Listing 1

Inline (weaving)

instrumentation section 4.5

Outline (Erlang tracing)

instrumentation, chapter 5

Erlang process model [19, 57]

trace event messages trace event messages

linear-time branching-time

(b) Implementation components reflecting the modules of 4.1a

Figure 4.1. Theoretical and corresponding implementation RV set-ups

lists, etc.). An external action, 𝛼 , is redefined as a tuple, ⟨ℓ,𝑑2,. . .,𝑑𝑛⟩, where the first element 𝑑1 = ℓ is the

label of 𝛼 and 𝑑2, . . .,𝑑𝑛 is the data payload carried by 𝛼 . We use the notation ℓ ⟨𝑑2,. . .,𝑑𝑛⟩ to write 𝛼 .

Patterns, 𝑒 ∈ Pat, are counterparts to external system actions. These are defined as tuples, ⟨ℓ,𝑥2𝑥2,. . .,𝑥𝑛𝑥𝑛⟩
(written as ℓ ⟨𝑥2𝑥2,. . .,𝑥𝑛𝑥𝑛⟩), where 𝑥2, . . .,𝑥𝑛 are pairwise-distinct data variables names ranging over D. Our

revised definition of symbolic actions in the modal constructs ⟨𝑒,𝑏 ⟩𝜑 and [𝑒,𝑏 ]𝜑 uses these patterns

instead of variables (cf. section 2.2). The binders 𝑥2𝑥2, . . .,𝑥𝑛𝑥𝑛 in 𝑒 bind the free occurrences of 𝑥2, . . .,𝑥𝑛 in

the Boolean constraint 𝑏, and in the continuation 𝜑 . We define the function, match(𝑒,𝛼), to handle

pattern matching. This function returns a substitution, 𝜋 : DVar⇀D, that maps the variables in 𝑒 to the

corresponding data values in the payload carried by 𝛼 when the shape of the pattern matches that of

the action, or ⊥ if the match is unsuccessful. Analogous to the symbolic actions of section 2.2, (𝑒,𝑏)
describes a set of actions. An action 𝛼 is in this set if (i) the patten match succeeds, i.e., match(𝑒,𝛼) =𝜋 ,

and (ii) the instantiated Boolean constraint expression 𝑏𝜋 holds.

We use the action label set L = {_,^,∗, ! ,?}, that captures the lifecycle of, and interaction between

processes. The fork action, _, is exhibited by a process when it creates a child; its dual, ^, is exhibited

by the child process upon initialisation. An exit action, ∗, signals process termination; send and receive,

respectively ! and ?, denote interaction. Table 4.1 details the actions related to these labels and the data

payload they carry.

Our token server of figure 3.1 is readily translatable to Erlang, as figure 4.2 shows. The server starts

when its main function, loop, in the Erlang module ts is invoked (state 𝑞1, line 2). From 𝑞1, it transitions

to 𝑞3 (line 4), exhibiting the initialisation event ^⟨PIDS,PIDP,ts,loop,[1,2]⟩; the placeholders PIDS and

PIDP respectively denote the PID values of the token server process and of the parent process forking

the server. At 𝑞3, the server accepts client requests, consisting of the tuple {PIDC,0}, where PIDC is the

PID of the client, and 0, the command requesting a new identification token, line 5. From state 𝑞4, the

server replies with the new token value NextTok on line 6, and transitions back to 𝑞3. This client-server
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Action 𝛼 Action pattern 𝑒 Variables Description

fork

initialise

_⟨𝑥1,𝑥2,𝑦1,𝑦2,𝑦3⟩

^⟨𝑥2,𝑥1,𝑦1,𝑦2,𝑦3⟩

𝑥1 PID of the parent process forking 𝑥2

𝑥2 PID of the child process forked by 𝑥1

𝑦1,𝑦2,𝑦3 Function signature forked by 𝑥1

exit ∗⟨𝑥1,𝑦1⟩
𝑥1 PID of the terminated process

𝑦1 Error datum, e.g. error reason, etc.

send ! ⟨𝑥1,𝑥2,𝑦1⟩

𝑥1 PID of the process sending the message

𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

receive ?⟨𝑥2,𝑦1⟩
𝑥2 PID of the recipient process

𝑦1 Message datum, e.g. integer, tuple, etc.

Table 4.1. Actions capturing the behaviour exhibited by Erlang processes

interaction emits the server events ?⟨PIDS,{PIDC,0}⟩ and ! ⟨PIDS,PIDC,NextTok⟩. When the server fails

at startup, it exhibits abnormal behaviour, shown as ∗⟨PIDS,-1⟩, and terminates, state 𝑞3. Note that our

translation of the server abstraction of figure 3.1 transforms the sink 𝑞3 to a final state and removes its

self-loop. This coincides with our token server implementation of figure 4.2b which exits when errors

arise. While this adaptation prohibits the server from generating infinitely long executions, one may

still interpret termination as the trace −1.Z𝜔 , indicating that once terminated, the server is permanently

trapped in that state, 𝑞2.

Example 4.1. (Pattern matching) Formula 𝜑5 can be reformulated to fit the implementation of figure 4.2:

[∗⟨𝑥1,𝑥2⟩,𝑥2 = -1]ff∧⟨^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑦6]⟩,𝑥5 = 1⟩tt (𝜑9)

The patterns in the left and right conjuncts of 𝜑9 match the exit and initialisation events respectively.

When 𝑞1 crashes at start-up, match(∗⟨𝑥1,𝑥2⟩,∗⟨PIDS,-1⟩) yields the substitution 𝜋 = [PIDS/𝑥1,-1/𝑥2], and the

instantiated constraint (𝑥2=-1)𝜋 holds. For the same event, match

(
^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑥6]⟩,∗⟨PIDS,-1⟩

)
=⊥

𝑞1

𝑞2

𝑞3 𝑞4

∗⟨PIDS,-1⟩

∗⟨PIDS, 𝚥⟩

^⟨PIDS,PIDP,ts,loop,[1,2]⟩

?⟨PIDS,{PIDC,0}⟩

! ⟨PIDS,PIDC,NextTok⟩

(a) Token server model updated with concrete Erlang process actions

1 start(Tok) �
2 spawn(ts, loop, [Tok,Tok + 1]).

3 loop(Tok, NextTok) when Tok = 1 �
4 receive
5 {Clt, 0} �
6 Clt ! NextTok,
7 loop(Tok, NextTok + 1)
8 end.

(b) Erlang implementation as module ts (excerpt)

Figure 4.2. Erlang adaptation of the token server of figure 3.1
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in the right conjunct, leading to a violation of formula 𝜑9. The reverse argument applies when 𝑞1 loads

successfully, where 𝜑9 is satisfied. In 𝜑9, the pattern variables 𝑥1 in ∗⟨𝑥1,𝑥2⟩, and 𝑥1,𝑥2,𝑥3,𝑥4,𝑥6 in

^⟨𝑥1,𝑥2,𝑥3,𝑥4,[𝑥5,𝑥6]⟩ are redundant.

[^⟨_,_,_,_,[𝑥5,_]⟩]max𝑋 .

(
[_]

(
[ ! ⟨_,_,𝑧3⟩,𝑥5 = 𝑧3 ]ff∧ [ ! ⟨_,_,𝑧3⟩,𝑥5 ≠ 𝑧3 ]𝑋

) )
(𝜑10)

Formula 𝜑10 restates 𝜑6 with pattern matching. It uses the ‘don’t care’ pattern _, that matches arbitrary

values, eliding redundant patterns and variables. ■

4.2 Synthesising Erlang Monitors

Our synthesis from maxHMLd specifications to executable Erlang monitors follows that of definition 3.6.

Figure 4.3 omits the cases for the falsity, necessity, and conjunction constructs, as these are analogous to

the ones for tt, ⟨𝑒,𝑏 ⟩𝜑 and 𝜑∨𝜓 . The translation from specifications to monitors is executed in three

stages. First, a formula is parsed into its equivalent AST. This is then passed to the code generator that

visits each of its nodes, mapping it to a monitor description as per the rules of figure 4.3. The monitor

description is encoded as an Erlang AST to simplify its handling. In the final stage, this AST is processed

by the Erlang compiler to emit the monitor source code or a BEAM [57] executable.

In this definition of L−M, tt (resp. ff) is translated to the Erlang atom yes (resp. no) that indicates

acceptance (resp. rejection). The remaining cases generate Erlang tuples whose first element, called

the tag, is an atom that identifies the kind of monitor. Disjunctions (resp. conjunctions) are translated

to the tuple tagged with or (resp. and), combining two sub-monitor descriptions. Greatest fixed point

constructs, max𝑋 . (𝜑), are mapped to rec tuples consisting of named functions, fun X()� L𝜑 M end, that

can be referenced by L𝑋 M. Modal constructs are synthesised as a choice with left and right actions. An

action tuple, act, combines a predicate function and an associated monitor body that is unfolded when

the predicate is true. The predicate function encodes the pattern matching and Boolean constraint

evaluation as one operation, using two clauses. Its first clause, fun(𝑒) when 𝑏, tests the constraint 𝑏 w.r.t.

the variables in the pattern 𝑒 that become dynamically instantiated with the data values carried by an

action 𝛼 at runtime. The second catch-all clause (_) covers the remaining cases, namely when: (i)

either the action under analysis fails to match the pattern, or (ii) the pattern matches but the Boolean

constraint does not hold. For the left action, the predicate clause fun(𝑒) when 𝑏 returns true when the

LttM= yes L𝜑∨𝜓 M= {or,L𝜑 M,L𝜓 M}

Lmax𝑋 . (𝜑)M= {rec, fun X()� L𝜑 M end} L𝑋 M= {rec, X}

L⟨𝑒,𝑏 ⟩𝜑 M=



{chs,

{act,

predicate︷                                              ︸︸                                              ︷
fun(𝑒) when 𝑏 � true; (_)� false end,

fun(𝑒)� L𝜑 M end},

 left action

{act, fun(𝑒) when 𝑏 � false; (_)� true end,

fun(_)� no end︸              ︷︷              ︸
monitor body

}

 right action

}

Figure 4.3. Translation from maxHML
d

formulae to Erlang code (excerpt)
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pattern match and guard test succeed, and false otherwise, i.e., (_). This condition is inverted for the

right action, modelling cases (i) and (ii) just described. Our encoding of the aforementioned predicate

in terms of Erlang function clauses spares us from implementing the pattern matching and constraint

evaluation mechanism. It also enables monitors to support most of the Erlang data types and its full

range of Boolean constraint expression syntax [19]. For similar reasons, L⟨𝑒,𝑏 ⟩𝜑 M encodes the monitor

body as fun(𝑒)� L𝜑 M end to delegate scoping to the Erlang language. This facilitates our synthesis and

optimises the memory management of monitors by offloading this aspect onto the language runtime.

4.3 The Monitoring Algorithm

The synthesis procedure of definition 3.6 generates monitors that can runtime check formulae in parallel

against the same position in the trace via disjunctive and conjunctive parallel composition. Our tool is

however engineered to emulate parallel monitors, rather than forking processes and delegating their

execution to the Erlang runtime. While the latter method tends to simplify the synthesis and runtime

monitoring, we adopt the former approach for two reasons.

(i) Previous empirical evidence suggests that parallelising via processes can induce high overhead

when the RV set-up is considerably scaled [219, 53]. A process-free design may render this overhead

more manageable [10].

(ii) Emulating parallel monitors requires us to tease apart the synthesised monitor description from

its operational semantics, which makes our set-up in line with the definitions of figure 3.2.

Our monitoring algorithm (listing 1) takes a monitor description𝑚 generated by L−M, and performs

successive reductions by applying𝑚 to events from the trace until a verdict is reached. Simultaneously,

the algorithm maintains all the possible active states of the monitor as this is evolved from one state

to the next. Listing 1 encodes this reduction strategy using a series of case statements (lines 2 to 15

and 20 to 32), following the operational semantics of figure 3.2. Each case maps the first part of a rule

conclusion to a pattern, enabling the monitoring algorithm to unambiguously match the rule to apply.

The body of cases consists of a return statement that corresponds to the outcome dictated by the rule.

Rules with premises (e.g. mChsL, mPar, etc.) are reduced recursively by reapplying rules until an axiom is

met, whereas axioms (e.g. mVrd, mDisNL, etc.) reduce immediately. For example, the pattern {chs,𝑚,𝑛}

on line 7 specifies that mChsL and mChsR only apply to monitors of the form𝑚+𝑛. Selecting whether to

reduce the left or right sub-monitor by analysing 𝛼 is delegated to the function Holds. This instantiates

the predicate encoded in act tuples with the data from 𝛼 (see figure 4.3), returning the result of the

predicate test. When the condition Holds(𝛼,𝑚)∧¬Holds(𝛼,𝑛) is true,𝑚+𝑛 is reduced to𝑚, equivalent

to the application of mChsL; the argument for mChsR is symmetric.

The function AnalyseAct of listing 1 conducts the runtime analysis. It ensures that once an action is

analysed, the monitor is left in a state where it is ready to analyse the next action. We implement this

logic by organising the application of the operational rules of figure 3.2 into two functions, DeriveAct

and DeriveTau, according to the kind of action used to reduce the monitor. DeriveAct on line 17 reduces

the monitor once by applying it to the action under analysis, yielding 𝑚′. Subsequently, ReduceTau

reapplies the function DeriveTau until all the internal transitions of the monitor are exhausted (lines

34 to 37). The cases on lines 21 to 24, corresponding to the axioms mDisYL, mDisNL, mConYL, mConNL,
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1 def DeriveAct(𝛼,𝑜)
2 match 𝑜 do

3 case yes∨no :
4 print ‘Verdict reached’
5 case {act, Pred,𝑚} :
6 return𝑚(𝛼) # Apply𝑚 to trace event 𝛼

7 case {chs,𝑚,𝑛} :
8 if (Holds(𝛼,𝑚) ∧¬Holds(𝛼,𝑛))
9 return DeriveAct(𝛼,𝑚)

10 else if ¬Holds(𝛼,𝑚) ∧Holds(𝛼,𝑛)
11 return DeriveAct(𝛼,𝑛)
12 case {Op,𝑚,𝑛}∧Op ∈ {or,and} :
13 𝑚′ =DeriveAct(𝛼,𝑚)
14 𝑛′ =DeriveAct(𝛼,𝑛)
15 return {Op,𝑚′,𝑛′}

Expect: Monitor is in a ready state

16 def AnalyseAct(𝛼,𝑚)
17 𝑚′ =DeriveAct(𝛼,𝑚)
18 return ReduceTau(𝑚′)

19 def DeriveTau(𝑜)
20 match 𝑜 do

21 case {or, yes,𝑚} : return yes

22 case {or, no,𝑚} : return𝑚

23 case {and, yes,𝑚} : return𝑚

24 case {and, no,𝑚} : return no

25 case {rec,𝑚} :
26 return𝑚() # Unfold monitor

27 case {Op,𝑚,𝑛}∧Op ∈ {or,and} :
28 if (𝑚′ =DeriveTau(𝑚)∧𝑚′ ≠⊥)
29 return𝑚′

30 else

31 return DeriveTau(𝑛)
32 case Otherwise : return ⊥

33 def ReduceTau(𝑚)
34 if (𝑚′ =DeriveTau(𝑚)∧𝑚′ ≠⊥)
35 return ReduceTau(𝑚′)
36 else

37 return𝑚 # No more 𝜏 reductions

Listing 1. Monitoring algorithm that reduces monitors following the small-step rules of figure 3.2

terminate redundant monitor states, and may be seen as a form of garbage collection (DeriveTau omits

the cases symmetric to those of lines 21 to 24).

4.4 Selective Instrumentation

Concurrent RV requires a mechanism whereby monitors can be selectively instrumented with differ-

ent processes of the SuS. This set-up generalises the concept of a monitored system induced by the

instrumentation relation definitions of figures 3.2 and 3.3 (i.e., 𝑚 ⊳ 𝑝 and 𝑚 ⊳^ ⊳ 𝑝) to independent system

processes. Localising the instrumentation on the basis of processes naturally partitions the global trace

of SuS events into isolated sub-traces that each corresponds to a process under scrutiny. These trace

partitions [219] (or slices [62, 196]) permit monitors to consider only the trace events associated with

a particular system component, and spares them from handling extraneous events not relevant to the

property being checked (refer to motivation in section 1.2).

We model selective instrumentation via the notion of an instrumentation map, Φ : Sig⇀Mon, from

function signatures, 𝑔 ∈ Sig, to monitors,𝑚 ∈Mon. Signatures 𝑔 are triples, ⟨𝑀,𝐹,𝐴⟩, comprised of the

atomic module and function names, 𝑀 and 𝐹 , and the list of arguments, 𝐴 = [𝑑1,. . .,𝑑𝑛], used to launch 𝑔

to execute as a process, 𝑝 ∈ Prc.

Definition 4.1 (Selective instrumentation). A monitor𝑚 is instrumented with a function signature 𝑔

that is launched as the process 𝑝 whenever Φ(𝑔) =𝑚, giving the instrumented process (𝑚 ⊳ 𝑝)𝑔 in the

synchronous case and (𝑚 ⊳^ ⊳ 𝑝)𝑔 in the asynchronous case. ■

We implement selective instrumentation via the meta keywords with and check. These enable us to

specify instances of Φ via the syntax: with ⟨𝑀,𝐹,𝐴⟩1 check 𝜑1, . . .,with ⟨𝑀,𝐹,𝐴⟩𝑛 check 𝜑𝑛 , where 𝜑𝑖 ∈
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maxHMLd. Our implementation translates these statements to the map Φ= [L𝜑1M/⟨𝑀,𝐹,𝐴⟩1,. . .,L𝜑𝑛 M/⟨𝑀,𝐹,𝐴⟩𝑛],
where L𝜑𝑖 M is the Erlang function encoding of the monitor synthesised by the procedure of figure 4.3.

We abuse notation and denote the Erlang monitor code L𝜑 M simply as𝑚.

4.5 Inline Instrumentation

To the best of our knowledge, there currently exists no inlining framework or library for the Erlang

ecosystem, apart from the AOP prototype developed by Cassar et al. [54] called eAOP. Rather than

adopting this framework, we opted to design our own instrumentation library since eAOP suffers from a

number of shortcomings. For instance, the code that it generates gives rise to certain subtle bugs and the

resulting weaved code is inefficient. Efficiency is a key concern of our empirical studies of chapters 6

and 7, because we need to scale our experiment to considerably high loads without risking biasing our

results due to superfluous inline instrumentation overhead. The eAOP library is no longer maintained,

lacks support for core or newer Erlang data types (e.g. binaries and maps), and is unable to instrument

applications built on the OTP middleware. We required the latter feature to instrument third-party

software, which we used in our case study of section 6.5.

Our inline instrumentation library assumes access to the source code of the SuS. It instruments

invocations to the function AnalyseAct discussed in listing 1 via code injection by manipulating the

program AST. We leverage the Erlang compilation pipeline that includes a parse transformation phase [57]

which offers an optional hook whereby the AST can be processed externally, prior to code generation.

This program code modification procedure is outlined in figure 4.4. In step 1 , the Erlang program

source code is preprocessed and parsed into the corresponding AST, step 2 . Subsequently, the AST is

passed to the parse transformer in step 3 : this invokes our custom-built weaver (step 4 ) that produces

the modified AST′ in step 5 . The decorated AST is compiled by the Erlang compiler into the program

binary in the final stage, step 6 . Note that this compilation phase, as well as the SuS, assume two core

dependencies, namely the (i) implementation equivalent of the monitoring algorithm of listing 1, and

(ii) monitor executable generated by our synthesis given in figure 4.3.

Step 4 in figure 4.4 performs two transformations on the program AST (shown in brown). Its first

transformation initialises the monitor (encoded as an Erlang function by the synthesis procedure of

figure 4.3) and stores it in the process dictionary (PD) of the instrumented process. PDs are process-local,

mutable key-value stores that every Erlang actor owns [19, 57]. The weaver identifies calls to the Erlang
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Figure 4.4. Instrumentation pipeline for inlined monitors using Erlang source-level weaving



4 Runtime Monitoring · 44

1 start(Tok) �
2 spawn(ts, loop, [Tok,Tok + 1]).

1 start(Tok) �
2 MFA = {M0 = ts, F0 = loop,
3 A0 = [Tok,Tok + 1]},
4 MonFun0 = load_mon_for(. . . )
5 P1 = self(),
6 P0 = spawn(
7 fun()→
8 put($mon_fun, MonFun0),
9 dispatch({^, self(), P1, MFA}),

10 apply(M0, F0, A0)
11 end)
12 dispatch({_, self(), P0, MFA}),
13 P0.

(a) Server initialised with analyser function

1 loop(Tok, NexTok) when Tok = 1 �
2 receive
3 M2 = {Clt, 0} �
4 dispatch(?, self(), M2),
5 (P1 = Clt) ! M1 = NextTok,
6 dispatch( ! , self(), P1, M1),
7 loop(Tok, NextTok + 1)
8 end.

(b) Weaved analysis code in token server loop

1 dispatch(Act) �
2 MonFun0 = get($mon_fun)
3 MonFun1 = analyse_act(Act, MonFun0)
4 put($mon_fun, MonFun1)

(c) Analysis done by AnalyseAct of listing 1 (excerpt)

Figure 4.5. Transformations to the AST of the ts program (shown as code)

built-in function (BIF) spawn() that carries the signature of the function that is forked to execute as

a new process. Our weaver replaces every spawn() with an overloaded version [19] that accepts an

anonymous function, fun(𝑒)� . . . end. This anonymous function is implemented such that it: (i) embeds

the monitor function in the PD, and (ii) applies the function specified in the original call to spawn().

Figure 4.5a (top) recalls the function start() that forks our token server loop. The weaved counterpart

of its AST—given as Erlang code for illustration in figure 4.5a (bottom)—performs the initialisation

described (i) and (ii), as follows. Line 2 constructs the Erlang triple MFA, initialising the variables M0, F0,

and A0 with the atoms ts and loop, and the argument list [Tok,Tok + 1]. Observe that MFA corresponds to

the function forked by the call to spawn() on line 2 in figure 4.5a (top). Next, the function load_mon_fun()

on line 4 is used to determine whether a specific spawn() call should be instrumented or skipped. It

encapsulates the (omitted) boilerplate logic for the instrumentation map Φ described in section 4.4. For

example, if Φ = [𝑚/⟨ts,loop,[_,_] ⟩], load_mon_fun() returns the Erlang monitor code 𝑚 for the triple MFA.

When no mapping can be found, i.e., Φ(𝑔) = ⊥, the atom undef is returned. Lines 6 to 11 replace the

original call to spawn() of line 2 in figure 4.5a (top) with the aforementioned anonymous function that:

(i) stores the monitor𝑚 in the PD via the BIF invocation put($mon_fun, MonFun0), and

(ii) applies the signature {M0, F0, A0} to replicate the original spawn() invocation mentioned earlier.

The second transformation decorates the program AST with calls at points of interest: these correspond

to the actions catalogued in table 4.1. Each call constructs an intermediate trace event description that is

dispatched to the monitor for analysis. Lines 9 and 12 in figure 4.5a forward the events ^ and _ to the

monitor using the function dispatch() defined in figure 4.5c. The function dispatch(),

(i) retrieves the monitor function𝑚 from the PD via the BIF invocation get($mon_fun),

(ii) analyses Act by delegating to analyse_act() that implements AnalyseAct of listing 1, and

(iii) writes the residual monitor MonFun1 back to the PD, i.e., put($mon_fun, MonFun1).

Figure 4.5c omits the logic where the retrieved monitor function is equivalent to the atoms undef

(mapping in Φ was not defined) or end (monitor terminated), in which case the analysis step on line 3 is

bypassed. The events ? and ! are analogously handled on lines 4 and 6 in figure 4.5b.
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Our monitoring algorithm, the choice of process events to collect, together with the two AST transfor-

mations discussed, reflect the operational rules of the synchronous instrumentation defined in figure 3.2.

The monitoring algorithm of listing 1 ensures that a monitor is fully unfolded and left in a ready state,

which captures rule iAsyM. Weaving particular points in the AST that correspond to the events of

table 4.1 models the case where a process can transition internally (e.g. call other functions, write to

standard output, etc.) via the rule iAsyP. The function dispatch() combines the rules iMon and iTer

that always permit the monitored system𝑚 ⊳𝑝 to transition to a next state, providing the system process

can perform an action (i.e., the premise 𝑝
𝛼−→ 𝑝′). Note that the state reached by 𝑚 ⊳ 𝑝 is dictated by

whether the monitor can analyse the exhibited process action (iMon) or is stuck (iTer). In the former

case, the function analyse_act() on line 3 is invoked; in the latter, the atom end is returned and future

analyses are skipped by dispatch() (code omitted).

4.6 Case Study: Monitoring the Cowboy-Ranch Protocol

We demonstrate the usability of inline monitoring by applying it to an off-the-shelf Erlang webserver

called Cowboy [134]. Cowboy delegates its socket management to Ranch (a socket acceptor pool for

TCP protocols [135]), but forwards incoming HTTP client requests to protocol handlers that are forked

dynamically by the webserver to service requests independently. Our aim is to runtime check fragments

of the request handling protocol between the Cowboy and Ranch components to:

• demonstrate the expressiveness of our extended logic maxHMLd by capturing properties of real-world

software (section 4.1), and

• validate the applicability of our monitoring and inline instrumentation technique to third-party

applications built on top of the Erlang/OTP middleware (sections 4.2 and 4.5).

Details of this protocol can be found in appendix B.2. The implementation of inline monitoring, along

with the properties discussed, are further validated in chapters 6 and 7 through extensive empirical tests.

For this case study, we redesign the token server of figure 4.2 as a REST web service that is deployed on

Cowboy. The server generates identification tokens in one of two formats, UUID, or short alphanumeric

strings. Clients request new tokens by issuing GET requests with the parameter, type=uuid or type=short,

specifying the token format required. The web service offers a standard interface: (i) it returns HTTP 200

when requests are properly formatted, (ii) HTTP 400 when the type parameter is omitted from the

request, and (iii) HTTP 500 when an unsupported type is used. We also simulate intermittent faults

in Cowboy components by injecting random process crashes based on a fair Bernoulli trial [191]. This

enables us to formulate properties that describe process termination. Our case study considers a selection

of properties that describe the Cowboy-Ranch request handling protocol; the full list of properties may

be found in appendix B.3.

Example 4.2 (Cowboy-Ranch protocol). One such property, 𝜑rp, concerns Cowboy request processes

that service client requests. It states that in its (current) execution, ‘a request process does not issue HTTP
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responses with code 500, nor does it crash’.

max𝑋 .

©«
[ ! ⟨rprcrprc,_,{tagtag, codecode, . . . }⟩, tag = resp∧code = 200]𝑋∧

[ ! ⟨rprcrprc,_,{tagtag, codecode, . . . }⟩, tag = resp∧code = 500]ff∧

[∗⟨rprcrprc,statstat⟩, stat = crash]ff

ª®®®®¬
(𝜑rp)

In 𝜑rp, the binders tagtag and codecode become instantiated with the atom resp designating a response

message, and the HTTP code of the response returned to requesting clients. Besides ensuring that

response messages sent by request processes do not contain the code 500, i.e., tag = resp∧code = 500,

formula 𝜑rp also asserts that these processes do not crash, i.e., stat = crash. The binder rprcrprc, referring to

the request process PID, is included in 𝜑rp for clarity. ■

4.7 Discussion

This chapter details an implementation of the core building blocks that comprise a RV set-up following the

modular blueprint established in chapter 3. We use Erlang as a vehicle to concretise these formal concepts

in terms of different software components that fit together according to the schematic of figure 4.1b. The

account we give makes minimal assumptions on the underlying implementation framework and can be

instantiated to other languages such as Java.

We extend the notion of symbolic actions from section 2.2 with pattern matching to reason about

composite data types (e.g. tuples and lists), and define a basic model of events that suffices to capture

the core behaviour of system processes. Section 4.2 replicates the synthesis procedure of definition 3.6

to generate executable Erlang monitors. It leverages the standard concepts of functional paradigms

(e.g. pattern matching, variable scoping) to streamline the synthesis and delegate these aspects to the

programming language, thereby minimising the chances of translation errors. The resulting monitors

emulate parallelism, in that these simultaneously explore the possible paths that can lead monitors to

reach a verdict. Our choice to forego parallel monitors stems from the overhead that these induce [219, 53].

While fine-grained concurrency does advocate for decomposing multiple tasks into processes, forking a

process for every parallel operator (that may be potentially nested into recursive constructs) rapidly

increases the consumption of memory. Moreover, sub-monitor processes are typically short-lived,

which would result in the continual triggering of the Erlang garbage collector, provoking further

scheduler utilisation. Consolidating the different verdicts reached by sub-monitors requires additional

communication that further aggravates the overhead.

The core monitor calculus of figure 3.2 that the synthesised monitors and monitoring algorithm assume

is crucial: it acts as an intermediate encoding that enables the monitoring algorithm to operate on any

monitor expressed in that calculus (see figure 4.1). There are two advantages to this scheme. First, the

semantics of monitors are not reliant on the specification formalism (the formalism-to-monitor mapping

is handled by the synthesis). Second, the monitors and monitoring algorithm that interprets them can

be treated as a black box that fulfils our general definition of a runtime monitor proposed in section 2.1.2,

i.e., a monitor is a machine 𝑚 (or sequence recogniser) that analyses finite trace prefixes and reaches

irrevocable verdicts.

One challenging aspect in implementing the instrumentation is to provide a standard mechanism via

which monitors can be selectively attached to the SuS. Section 4.4 defines the notion of an instrumentation
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map, Φ, that generalises the instrumentation relations of figures 3.2 and 3.3. Instances of Φ designate

particular points in the system execution at which monitors are to be instrumented. For our concurrency

use case, we specify instrumentation points as function signatures that are launched by the SuS to

execute as independent processes. The same scheme can also be adapted to (monolithic) object-oriented

scenarios where monitors are often instrumented with class constructors. Our monitor inlining procedure

implements selective instrumentation through source-level weaving by manipulating the AST of Erlang

programs. It adheres to the instrumentation rules of figure 3.2 and is compatible with applications that

are built atop the Erlang OTP libraries; see section 4.6.

In chapter 5, we show how the same definition of the instrumentation map is implemented for the case

of outline monitoring (figure 4.1b, bottom right). The common interface that selective instrumentation

establishes between the SuS and monitors, together with our treatment of monitors as black-box machines,

makes the ensuing Erlang monitors ‘synthesise once, instrument anywhere’. This aspect is key to our

empirical experiments of chapters 6 and 7, where using the same monitor executable with both inlined

and outlined benchmarks eliminates the possibility of inducing runtime biases that could arise from

disparities in the synthesised monitor code.

4.7.1 Related Work

Our synthesis procedure of section 4.2 contrasts with another alluded to in sections 2.2, 2.5 and 3.6 that

operates on the monitorable fragments of the branching-time `HML [116, 118, 7, 4] (figure 4.1a, top right).

The latter synthesis generates monitors with non-deterministic behaviour that, while sufficient for the

theoretical results required in op. cit., may lead to missed detections in practice. An early materialisation

of [116, 118] as the tool detectEr [21, 220, 56, 113] addresses this shortcoming by parallelising monitors

using processes, enabling them to reach verdicts along all possible paths. The monitors in these studies

use a subset of the core calculus defined in figure 3.2, making them compatible with our framework

(see component labelled ‘detectEr’ in figure 4.1b, top right). While effective, [219, 53] show that these

monitors scale poorly.

There are other approaches to monitoring systems with events that carry data, e.g., [30, 33, 131, 128, 129,

37, 216]. One work that shares characteristics with ours is PTS [62], where the global trace is projected

into local sub-traces called slices, based on parametric specifications. These are properties specified in

terms of symbolic events whose parameters are instantiated to values from events in the global trace. Our

mechanism of the instrumentation map identifies the SuS components to be instrumented and filters out

events to obtain trace slices (see section 4.4). PTS is adopted by a number of RV tools that handle data

(see e.g., [16, 78]), notably JavaMOP [176, 138, 61] and MarQ [197, 24] for Java, and Elarva [71] for Erlang.

JavaMOP and MarQ use inlining to instrument Java objects with local monitors to obtain trace slices

naturally. Both of these tools target monolithic architectures and do not provide support for concurrent

RV. Elarva takes a different strategy to PTS. It uses the Erlang tracing infrastructure to centrally collect

trace events that are demultiplexed between monitors, thereby fabricating slices at runtime. Due to its

centralised architecture, this technique is susceptible to suffering from considerable overheads and is

unable to scale in practice. As we show in chapter 7, centralised approaches such as these are bound to

fail.



5 Decentralised Outline Instrumentation

Outlining is an alternative instrumentation method that circumvents the limitations of inlining discussed

in section 2.1.4. It decouples the SuS from its monitors and treats it as a black box, which makes it the

only viable option when the system cannot be modified through inlining. This chapter devises a first,

general, reactive algorithm that instantiates the asynchronous instrumentation definition formalised in

section 3.5, extending it to decentralised components. In our study, we delineate instrumentation and

monitor analysis to: (i) isolate and address the complications of instrumenting decentralised outline

monitors, and (ii) understand the impact of separating the instrumentation and analysis w.r.t. overhead

(refer to section 7.2.3). This adheres to our modular set-up of figure 4.1b where outline instrumentation

is encapsulated as a separate component (bottom right) that provides the monitoring layer with trace

events. Our algorithm assumes a tracing infrastructure, such as the ones discussed in section 2.1.4, to

reap the benefits of outlining. This design choice, however, complicates the collection and reporting of

trace events to outline monitors due to the interleaved execution of the SuS and the instrumentation

processes. We:

• detail how our algorithm overcomes the challenges of scaling the monitoring set-up with the SuS,

elaborating on the issues that stem from the dynamic reconfiguration of outline monitors in our

asynchronous setting, Section 5.1;

• demonstrate its implementability by overviewing our tool that monitors programs written for the

EVM, and discuss how the correctness of our implementation is validated via rigorous invariant

testing, Section 5.3.

Chapter 7 validates our implementation further by subjecting it to a comprehensive empirical evaluation

that gives us high assurances of its correctness and feasibility in practice.

5.1 Modelling Decentralised Outline Instrumentation

The decentralised outline algorithm we propose addresses the instrumentation gap identified in sec-

tion 1.1.2. There are several constraints that the reactive system setting necessarily imposes on our

operational model of processes and monitors:

C1 Local clocks. Components do not share a common global clock.

C2 Elastic. The number of components fluctuates.

C3 Point-to-point messaging. A sender component interacts directly with one receiver at a time.

C4 Message reordering. The order of messages as sent from different components is not guaranteed at the

recipient end. This does not apply to point-to-point messaging, i.e., successive messages exchanged

between pairs of components are delivered in the same sequence issued.

48
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Figure 5.1. Decentralised outline monitoring set-up consisting of tracer and monitor roles

Online monitors are instrumented to run with the SuS. A reactive system, therefore, entails that the

monitoring set-up is itself reactive, which further requires the runtime analysis to be:

C5 Decentralised. No central entity coordinates monitors so that the set-up is scalable and not susceptible

to SPOFs.

C6 Passive. Monitors react to SuS events but do not steer or block its execution.

C7 Reliable. Trace events are not lost, nor reported to monitors out of order.

Since our study considers neither failure nor security aspects (refer to section 1.2), we assume:

A1 Reliable components. Components are not subject to fail-stops or Byzantine failures.

A2 Reliable communication. Messages are not tampered with, always delivered, and never duplicated.

The design of our instrumentation approach abides by constraints C1 to C7. Our definition of monitors

as sequence recognisers (refer to section 2.1.2) satisfies constraint C6. The algorithm instruments monitors

to run asynchronously with the SuS, in line with constraint C1; this turns out to be the general case

for distributed set-ups. Note that distribution can be obtained by weakening assumptions A1 and A2.

Constraints C2 and C5 call for the instrumentation to scale dynamically by continually reconfiguring the

monitoring set-up in response to changes in the SuS. Finally, constraint C7 guards against issues arising

from constraint C4, which is vital for analyses that are sensitive to the temporal ordering of trace events,

as argued in section 2.1.4. C7 enables to pin down our notion of valid traces.

Definition 5.1 (Valid trace). A finite trace 𝑠 is said to be valid w.r.t. a process 𝑝 iff

• 𝑠 contains all the trace events exhibited by 𝑝 so far, i.e., no events are missing, and

• the order of these events corresponds to the one in which these occur locally at 𝑝 . ■

Figure 5.1 shows the variants of outline instrumentation that we consider. It depicts a two-process SuS

where the trace events (encoded as messages) of processes 𝑃 and 𝑄 are respectively directed to tracers

𝑇𝑃 and 𝑇𝑄 and analysed by monitors 𝑀𝑃 and 𝑀𝑄 . The externalised analysis (external) arrangement in

figure 5.1a consists of independent tracer and monitor processes. It teases apart the tasks of trace event

handing and monitor reorganisation, performed by tracers,𝑇 , from the task of event analysis, effected by

monitors, 𝑀 . Decoupling the tracers from monitors follows the single responsibility tenet advocated in

fine-grained concurrency design [15, 19], but at the expense of introducing a separate monitor component.
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The internalised analysis variant (internal) merges the tracer and monitor to forgo this extra component

(figure 5.1b). Our algorithm relies on a tracing infrastructure, such as the ones mentioned in section 2.1.4,

to gather streams of event messages for the traced SuS components. Tracers can start and stop these

event streams at runtime. The model also assumes that:

A3 System processes may share tracers. A tracer can trace multiple processes simultaneously. This makes

it possible for monitors to treat multiple processes of the SuS as one component1.

A4 Tracers do not share system processes. A process of the SuS is traced by one tracer at any point in time.

This keeps our core logic manageable. If multiple monitors need to analyse the behaviour of the

same component, the tracer can duplicate the events and report them to the monitors accordingly.

A5 System processes inherit tracers. A newly forked process in the SuS is automatically assigned the

tracer of its parent. This behaviour facilitates assumption A3 as it allows tracers to consider sets of

processes as a unit by default.

Assumption A5 requires a tracer to intervene if it needs to monitor a particular process independently

from others: it must first stop the active tracer before it can take over and resume tracing this process

itself. In the absence of such interventions, the SuS is implicitly traced as one entity by the (central)

tracer, which is instrumented with the root system process. This design choice follows the approach of

existing centralised monitoring tools, e.g., [21, 53, 71, 180].

5.1.1 Processes and Trace Events

Our model of processes and trace events builds on the one introduced in sections 4.1 and 4.4. It assumes

a denumerable set of PIDs to reference processes. We distinguish between system, tracer, and monitor

process forms, denoting them respectively by the sets Pids, Pidt and Pidm, where 𝑝s ∈ Pids, 𝑝t ∈ Pidt,

𝑝m ∈Pidm. Processes are created via the function fork(𝑔) that takes the signature of the code to be run by

the forked process, 𝑔 ∈ Sig, and returns its fresh PID. We refer to the process invoking fork as the parent,

and to the forked process as the child. To create monitor processes, the function fork is overloaded to

accept executable monitor code, 𝑚, and return the corresponding PID, 𝑝m. Tracer processes are forked

analogously. Recall that the code𝑚 is generated by the synthesis procedure described in section 4.2 from

some maxHMLd specification 𝜑 that one wishes to runtime check. Since our account focusses mostly on

the tracing aspect, we use the terms tracer and monitor interchangeably whenever the distinction is

unimportant. We refer to a grouping of one or more processes of the SuS as a component.

Following a reactive model, our processes communicate via asynchronous messages. Each process

owns a message buffer, ^, from where it can read messages out-of-order and in non-blocking fashion.

Messages, 𝑘 ∈Msg, adopt an analogous definition to the trace events given in section 4.1. They are tuples,

⟨𝜕,𝑑2,. . .,𝑑𝑛⟩, where the first element 𝑑1 = 𝜕 is the qualifier and 𝑑2, . . .,𝑑𝑛 ∈D (see section 4.1) is the data

payload carried by the message. The message qualifier, 𝜕 ∈ {evt,dtc,rtd}, indicates the type of message:

• evt : trace event message collected by the tracing infrastructure,

• dtc : detach command message that tracers exchange to reorganise the monitor choreography, and

• rtd : routing message that embeds evt or dtc messages forwarded between tracers.

1This is something that is not easily achieved with inlining.
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Event Action (𝑒.act) Field name Description

fork _

src PID of the parent process forking 𝑒.tgt via fork(𝑔)

tgt PID of the child process forked by 𝑒.src

sig Function signature 𝑔 forked by 𝑒.tgt

exit ∗ src PID of the terminated process

send !
src PID of the process sending the message

tgt PID of the recipient process

receive ? src PID of the recipient process

Table 5.1. Trace event messages, action label, and data field names

We use the dot notation (.) to access elements of the data payload carried in messages, 𝑑1,𝑑2, . . .,𝑑𝑛 , via

indexable field names, e.g. the message qualifier 𝜕 is read through 𝑘.type. The metavariables 𝑒 , 𝑐 , and 𝑟

are reserved for message types evt, dtc, and rtd respectively.

Trace events are encoded as messages, ⟨evt,ℓ,. . .,𝑑𝑛⟩, where the label, 𝑑2 = ℓ ∈ L, identifies the action

exhibited by the SuS, and the remainder, . . .,𝑑𝑛 , is the action payload described in section 4.1. The event

action label is accessed using 𝑒.act. As in section 4.1, we let L = {_,∗, ! ,?} denote process actions fork

(_), exit (∗), send ( ! ) and receive (?); initialise (^) is omitted since this is not used by our algorithm.

We use the action label ℓ in lieu of the full trace event message payload (i.e., omitting 𝜕 and . . .,𝑑𝑛) to

simplify our exposition when suitable. Table 5.1 adapts table 4.1 and catalogues the relevant trace events

and corresponding data.

5.2 The Instrumentation Algorithm

Our algorithm covers the two variants of figure 5.1. Listings 2 to 4 describe the core logic found in each

tracer. Every tracer maintains an internal state, 𝜍 , that consists of three maps:

(i) the routing map, Π, governing how events are routed to other tracers,

(ii) the instrumentation map from section 4.4, Φ, that enables selective instrumentation, and

(iii) the traced-component map, Γ, maintaining processes of the SuS that the tracer currently tracks.

𝑃

𝑄

𝑅

ps

qs

rs

fork send

receive fork exit

(a) Interaction sequence of 𝑃 , 𝑄 and 𝑅

𝑇𝑃

𝑇𝑄

𝑇𝑅

pt

qt

rt

⟨evt,_,p
s
,q
s
,𝑔𝑄 ⟩ ⟨evt, ! ,p

s
,q
s
⟩

⟨evt,?,q
s
⟩ ⟨evt,_,q

s
,rs ,𝑔𝑅 ⟩ ⟨evt,∗,q

s
⟩

(no events)

(b) Trace partitions for𝑇𝑃 ,𝑇𝑄 and𝑇𝑅 (monitors omitted)

Figure 5.2. SuS with processes 𝑃 , 𝑄 , and 𝑅 instrumented with three independent monitors
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Recall that our monitors are sequence recognisers, which allows tracers to remain agnostic to their

encapsulated analysis logic. We overload the function AnalyseAct described in listing 1 to link the

tracing and monitors. The algorithm we give uses these overloads to analyse events by forwarding

them to a monitor externalised in its own process (figure 5.1a), or analyse them internally (figure 5.1b),

following the exact method detailed in the function dispatch() of figure 4.5c.

The message buffer that tracer processes are equipped with is a materialisation of the queue ^ that our

asynchronous instrumentation definition given in section 3.5 uses to decouple the SuS from its monitors.

This buffer enables the system to execute without waiting for the monitors to complete their analysis,

in agreement with rule aiPrc of figure 3.3. The instrumentation infrastructure tends to the collection

of the trace events exhibited by the SuS and their delivery to the message buffer of the appropriate

tracer. Tracers can independently analyse their buffer of trace events through invocations of the function

AnalyseAct; this corresponds to rule aiMon. Rule aiAsyM is embodied by our monitoring algorithm

of listing 1 that always unfolds monitors to a ready state. Analogous to the reasoning of section 3.5,

capturing only specific events (i.e., fork, exit, send, and receive) models the unobservable transitions

that processes can follow via aiAsyP. The rule aiTer given in section 3.5 is central to garbage collection,

where redundant tracers are terminated. While aiTer is specific to analyses that reach the inconclusive

verdict (end), our algorithm extends this rule to handle (yes) and reject (no) verdicts. The reason for this is

that the verdicts flagged by monitors are irrevocable, which permits monitors to terminate, knowing that

future analyses can never overturn the verdict flagged. Note that verdict flagging alone does not decide

whether tracers are terminated; section 5.2.7 outlines other conditions that our algorithm considers

during garbage collection.

Example 5.1. Consider a SuS consisting of three processes, {𝑃,𝑄,𝑅}. 𝑃 forks process𝑄 and communicates

with it; afterwards, 𝑄 forks 𝑅 and terminates. 𝑃 , 𝑄 , and 𝑅 are assigned PIDs ps, qs, and rs respectively.

This interaction, captured in figure 5.2a, is fundamentally sequential due to the synchronous dependency

between processes: e.g., 𝑄 is created by 𝑃 , and 𝑅 is forked by 𝑄 only after 𝑄 receives the message from 𝑃 .

There are a number of ways in which this system can be instrumented with monitors (or tracers).

For instance, a central tracer may be set up for all of {𝑃,𝑄,𝑅}; alternatively one could choose to trace

{𝑃,𝑄} as a single component and use a separate tracer for the singleton process {𝑅}, etc. In this example,

we instrument the SuS with independent tracer, one for each of {𝑃}, {𝑄}, and {𝑅}. Figure 5.2b shows

these tracers labelled as 𝑇𝑃 , 𝑇𝑄 and 𝑇𝑅 , their corresponding PIDs, and the valid sequence of events

(definition 5.1) each tracer is meant to analyse. ■

Despite its small size and sequential operation, the SuS and monitoring set-up of example 5.1 may still

be subject to multiple interleaved executions. This results from the asynchronous organisation of the

SuS and monitor components, whose execution depends on external factors such as process scheduling.

Table 5.2 summarises the challenges inherent to decentralised outline monitoring we tackle in the

forthcoming sections 5.2.1 to 5.2.7. These sections detail how our algorithm reports trace events to

independent monitors while abiding by the reliability guarantees that RV requires, i.e., trace events are

not lost, nor reported out of order (definition 5.1). Along with ensuring these guarantees, we elaborate on

the technique our algorithm uses to achieve elastic behaviour via dynamic instrumentation and garbage

collection of monitors.
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Challenge Solution

Non-invasive monitors Collecting trace events from the SuS via asynchronous tracing, Section 5.2.1

Scaling up the set-up Instrumenting new monitors dynamically for partitioned traces, Section 5.2.2

No trace event loss Routing trace events to deliver them to the correct monitors, Section 5.2.3

No trace event reordering Prioritising forwarded events before analysing any other event, Section 5.2.4

Independent monitors
Detach tracers from their ancestors once all the trace events have been for-

warded, Section 5.2.5

Targeted monitoring Selective instrumentation of forked processes, Section 5.2.6

Scaling down the set-up Garbage collecting redundant monitors, Section 5.2.7

Table 5.2. Challenges addressed by decentralised outline monitoring to ensure correct and elastic runtime analyses

5.2.1 Tracing

The operations Trace, Clear and Preempt provide access to the underlying tracing infrastructure.

Trace enables a tracer with PID 𝑝t to register its interest in receiving trace events (in the form of

messages) of a system process with PID 𝑝s. This operation can be undone using Clear, which blocks

the calling tracer 𝑝t and returns once all the event messages for 𝑝s that are in transit to 𝑝t have been

delivered (assumption A2). Preempt combines Clear and Trace, enabling a different tracer 𝑝′t to take

over the tracing of process 𝑝s from the current tracer, 𝑝t. Tracing is inherited by every child process that

a traced system process forks, following assumption A5. Clear or Preempt can be used to alter this

arrangement, as section 5.2.2 explains. Readers are referred to listing 7 for specifics on these operations.

5.2.2 Trace Partitioning

Processes (or threads) originate as a hierarchy, starting from the root process that forks child pro-

cesses, and so forth, e.g. CreateThread() in Windows [177], pthread_create() for POSIX threads [48],

ActorContext.spawn() in Akka [199], and spawn() in Erlang [57] and Elixir [142]. We borrow standard

terminology to describe process relationships in this hierarchy (e.g. parent, ancestor, descendant, etc.).

In our algorithm, tracers are programmed to react to fork (_) and exit (∗) events in the trace. Figure 5.3

illustrates how the hierarchical process creation sequence of the SuS is exploited to instrument tracers.

A tracer instruments other tracers whenever it encounters _ events in the execution. In figure 5.3a,

the root tracer 𝑇𝑃 analyses the top-level process 𝑃 , step 1 . It instruments a new tracer, 𝑇𝑄 , for process

𝑄 when it observes the fork event ⟨evt,_,ps,qs,𝑔𝑄 ⟩ exhibited by 𝑃 in step 3 . The field 𝑒.tgt (refer to

table 4.1) carried by _ designates the SuS process (ID) to be instrumented with the new tracer, qs
in this case. From this point onwards, 𝑇𝑄 takes over the tracing of process 𝑄 from 𝑇𝑃 by invoking

Preempt to trace 𝑄 independently of 𝑇𝑃 , as shown in steps 4 and 5 of figure 5.3b. Meanwhile, 𝑇𝑃
resumes its analysis and receives the send event ⟨evt, ! ,ps,qs⟩ in step 10 after 𝑃 messages 𝑄 in step 6

of figure 5.3c. Subsequent _ events observed by 𝑇𝑃 and 𝑇𝑄 are handled as described earlier in steps
3 to 5 . Figures 5.3c and 5.3d show how the final tracer, 𝑇𝑅 , is instrumented as 𝑄 forks its child 𝑅. It is

worth mentioning that prior to instrumenting 𝑇𝑄 in step 4 , process 𝑄 automatically inherits tracer 𝑇𝑃
of its parent 𝑃 in step 2 , following assumption A5. 𝑇𝑄 is analogously assigned to process 𝑅 in step 8
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before 𝑇𝑄 instruments the new tracer 𝑇𝑅 for 𝑅 in step 12 .

5.2.3 Trace Event Routing

The asynchrony between the SuS and tracer components may give rise to different interleaved executions.

Figure 5.4 shows an interleaving alternative to that of figures 5.3b to 5.3d. In figure 5.4a, 𝑇𝑃 is slow to

handle the fork event of 𝑄 (received in step 3 in figure 5.3a), and fails to instrument 𝑇𝑄 promptly. As

a result, the events ? and _ exhibited by 𝑄 are received by 𝑇𝑃 in steps 7 and 9 . Figure 5.4a shows

the case where ⟨evt,?,qs⟩ is processed by 𝑇𝑃 , step 11 , rather than by the correct tracer 𝑇𝑄 that would

be eventually instrumented by 𝑇𝑃 . This interleaving corrupts the runtime analysis, as the events that

should be processed by one tracer reach unintended ones.

To address this issue, tracers keep the events they should handle and forward the rest to neighbouring

tracers. This scheme follows hop-by-hop routing used in IP networks [174]. We define the notion of

a router tracer as one that receives the trace events of a system process that are meant to be handled

by another tracer. The role of router tracers (or routers for short) is to (i) embed trace events evt or

detach commands dtc into routing messages, rtd, and (ii) dispatch them to neighbouring tracers. Routing

messages are transmitted in a hop-by-hop fashion by tracers until they reach their destination tracer.

For instance, 𝑇𝑃 in figure 5.4a becomes the router tracer for 𝑄 since it initially receives the events ?
and _ of 𝑄 (steps 7 and 9 ), although these are meant to be handled by 𝑇𝑄 . 𝑇𝑃 routes these events as

follows. It first instruments 𝑇𝑄 with 𝑄 in step 11 . Next, it prepares ⟨evt,?,qs⟩ and ⟨evt,_,qs,rs,𝑔𝑅⟩ for

transmission by embedding them in rtd messages (steps 14 and 18 ), forwarding them to 𝑇𝑄 in steps 15

and 19 . The event ⟨evt, ! ,ps,qs⟩ is handled by 𝑇𝑃 , step 17 . Concurrently, 𝑇𝑄 acts on the forwarded events

? and _ in steps 16 and 21 , and instruments 𝑇𝑅 with 𝑅 as a result in step 22 .

Tracers determine which events to keep or forward by means of the routing map, Π :Pids⇀Pidt, that

relates SuS and tracer PIDs. Each tracer queries its routing map for every event 𝑒 it processes using the

𝑃 𝑄

𝑇𝑃

_ 3

fork 2

1 2

(a) Process 𝑃 forks 𝑄 ;𝑇𝑃 also traces 𝑄 , assumption A5

𝑃 𝑄

𝑇𝑃 𝑇𝑄

instr. 4

5

(b)𝑇𝑃 instruments new tracer𝑇𝑄 for process 𝑄

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄

send 6

! 10

receive 7

? 9 _ 11

fork 8

8

(c)𝑇𝑃 and𝑇𝑄 analyse trace events independently

𝑃 𝑄 𝑅

𝑇𝑃 𝑇𝑄 𝑇𝑅

instr. 12

exit 15

∗ 14

13

(d) Processes 𝑃 , 𝑄 , 𝑅 and corresponding tracers

Figure 5.3. Outline tracer instrumentation for processes 𝑃 , 𝑄 and 𝑄 (monitors omitted)
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(b) Trace events for 𝑄 routed from𝑇𝑃 to𝑇𝑄

Figure 5.4. Hop-by-hop trace event routing using tracer routing maps Π (monitors omitted)

source PID, 𝑒.src. An event is forwarded to a tracer with PID 𝑝t only if Π(𝑒.src) = 𝑝t, otherwise it is

handled by the tracer itself since a route for the event does not exist, i.e., Π(𝑒.src) =⊥. HandleFork,

HandleExit and HandleComm in listing 3 implement this forwarding logic on lines 19, 27 and 35.

A tracer populates its routing map Π whenever it processes a fork event ⟨evt,_,𝑝s,𝑝
′
s,𝑔⟩. It considers

one of two cases for the originator of the event, PID 𝑝s:

CK Π(𝑝s) =⊥. This is a cue to adapt the monitor choreography to account for the forked process 𝑝′s. The

tracer keeps the fork event and instruments a second tracer 𝑇𝑃 ′ with PID 𝑝′t for the process 𝑝′s. It

then adds the mapping 𝑝′s ↦→𝑝′t to its routing map Π.

CF Π(𝑝s) =𝑝′t. A route to the neighbouring tracer 𝑝′t exists for trace events originating from the process

with PID 𝑝s. This informs the tracer that the event is meant for another tracer. The tracer forwards

the fork event of process 𝑝s to tracer 𝑝′t, and adds the mapping 𝑝′s ↦→𝑝′t to its routing map Π.

In cases CK and CF, the addition of 𝑝′s ↦→𝑝′t ensures that future events originating from 𝑝′s can always be

Expect: 𝑒.act=_
1 def Instrument◦(𝜍,𝑒,𝑝t)
2 𝑝s← 𝑒.tgt
3 if ((𝑚← 𝜍 .Φ(𝑒.sig)) ≠⊥)
4 𝑝′t← fork(Tracer(𝜍,𝑚,𝑝s,𝑝t))
5 𝜍 .Π← 𝜍 .Π∪{⟨𝑝s,𝑝′t⟩}
6 else

# In ◦mode, there is no PID 𝑝s to detach

# from a router; add 𝑝s to Γ in ◦mode

7 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑝s,◦⟩}
8 return 𝜍

Expect: 𝑒.act=_
9 def Instrument•(𝜍,𝑒,𝑝t)

10 𝑝s← 𝑒.tgt
11 if ((𝑚← 𝜍 .Φ(𝑒.sig)) ≠⊥)
12 𝑝′t← fork(Tracer(𝜍,𝑚,𝑝s,𝑝t))
13 𝜍 .Π← 𝜍 .Π∪{⟨𝑝s,𝑝′t⟩}
14 else

# Detach PID 𝑝s from router 𝑝t
15 Detach(𝑝s,𝑝t)
16 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑝s,•⟩} # Add 𝑝s in •mode

17 return 𝜍

Listing 2. Instrumentation operations for direct and priority tracer modes
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1 def Loop◦(𝜍,𝑝m)
2 forever do

3 𝑘← next message from buffer ^
4 if (𝑘.type= evt)
5 𝜍← HandleEvent◦(𝜍,𝑘,𝑝m)
6 else if 𝑘.type= dtc

# route dtc back to issuer

7 𝜍←RouteDtc(𝜍,𝑘,𝑝m)
8 else if 𝑘.type= rtd

9 𝜍← ForwdRtd◦ (𝜍,𝑘,𝑝m)

10 def HandleEvent◦(𝜍,𝑒,𝑝m)
11 if (𝑒.act=_)
12 𝜍← HandleFork◦(𝜍,𝑒,𝑝m)
13 else if 𝑒.act= ∗

14 𝜍← HandleExit◦(𝜍,𝑒,𝑝m)
15 else if 𝑒.act ∈ { ! ,?}
16 HandleComm◦(𝜍,𝑒,𝑝m)
17 return 𝜍

18 def HandleFork◦(𝜍,𝑒,𝑝m)
19 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
20 Route(𝑒,𝑝t)

# Route for 𝑒.tgt goes via the tracer of 𝑒.src

21 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
22 else

23 AnalyseAct(𝑒,𝑝m) # Analyse event

24 𝜍← Instrument◦(𝜍,𝑒,self ())
25 return 𝜍

26 def HandleExit◦(𝜍,𝑒,𝑝m)
27 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
28 Route(𝑒,𝑝t)
29 else

30 AnalyseAct(𝑒,𝑝m) # Analyse event

31 𝜍 .Γ← 𝜍 .Γ\{⟨𝑒.src,◦⟩} # Remove dead 𝑒.src

32 TryGC(𝜍,𝑝m)
33 return 𝜍

34 def HandleComm◦(𝜍,𝑒,𝑝m)
35 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
36 Route(𝑒,𝑝t)
37 else

38 AnalyseAct(𝑒,𝑝m) # Analyse event

39 def RouteDtc(𝜍,𝑐,𝑝m)
40 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
41 Route(𝑐,𝑝t)
42 𝜍 .Π← 𝜍 .Π\{⟨𝑐.tgt,𝑝t⟩} # Clear 𝑐.tgt route

43 TryGC(𝜍,𝑝m)
44 return 𝜍

45 def ForwdRtd◦(𝜍,𝑟,𝑝m)
46 𝑘← 𝑟 .emb
47 if (𝑘.type= dtc)
48 𝜍← ForwdDtc(𝜍,𝑟,𝑝m)
49 else if 𝑘.type= evt

50 𝜍← ForwdEvt(𝜍,𝑟 )
51 return 𝜍

52 def ForwdDtc(𝜍,𝑟,𝑝m)
53 𝑐← 𝑟 .emb
54 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
55 Forwd(𝑟,𝑝t)
56 𝜍 .Π← 𝜍 .Π\{⟨𝑐.tgt,𝑝t⟩} # Clear 𝑐.tgt route

57 TryGC(𝜍,𝑝m)
58 return 𝜍

Expect: 𝜍 .Π(𝑟 .emb.src) ≠⊥
59 def ForwdEvt(𝜍,𝑟 )
60 𝑒← 𝑟 .emb
61 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
62 Forwd(𝑟,𝑝m)

# Route for 𝑒.tgt goes via the tracer of 𝑒.src

63 if (𝑒.act=_)
64 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
65 return 𝜍

Listing 3. Tracer loop that handles direct (◦) trace events, message routing and forwarding

forwarded to neighbouring tracers 𝑝′t. Figure 5.4b shows the routing maps of𝑇𝑃 and𝑇𝑄 . 𝑇𝑃 adds qs ↦→qt,

step 13 , after processing ⟨evt,_,ps,qs,𝑔𝑄 ⟩ from the message buffer in step 10 and instrumenting tracer

𝑇𝑄 with 𝑄 in step 11 ; an instance of case CK. The function Instrument in listing 2 details this on line 5,

where the mapping 𝑒.tgt ↦→𝑝′t (with 𝑒.tgt=𝑝′s) is added to Π, following the creation of tracer 𝑝′t. Step 20

of figure 5.4b is an instance of case CF: 𝑇𝑃 adds rs ↦→ qt after processing ⟨evt,_,qs,rs,𝑔𝑅⟩ for 𝑅 in step 18 .

Crucially,𝑇𝑃 does not instrument a new tracer, but delegates this task to𝑇𝑄 by forwarding the fork event

in question. Lines 21 and 64 in listing 3 (and later line 21 in listing 4) are manifestations of this, where

the mapping 𝑒.tgt ↦→𝑝′t is added after the fork event 𝑒 is routed to the next tracer 𝑝′t.

Note that in figure 5.4b, the mappings inside 𝑇𝑃 point to tracer 𝑇𝑄 , and the mapping in 𝑇𝑄 points to
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(b)𝑇𝑄 processes priority events routed by𝑇𝑃 first

Figure 5.5. Trace event order preservation using priority (•) and direct (◦) tracer modes (monitors omitted)

𝑇𝑅 . This arises from cases CK and CF, where every tracer in the choreography can only forward events

to adjacent tracers. For instance, the events that 𝑅 might exhibit and that are collected by 𝑇𝑃 must be

forwarded twice to reach the intended tracer 𝑇𝑅—from tracer 𝑇𝑃 to 𝑇𝑄 , and from 𝑇𝑄 to 𝑇𝑅 . The routing

map entries of neighbouring tracers form a connected directed acyclic graph (DAG), ensuring that

every trace event message is eventually delivered to its correct destination. Our algorithm implements

hop-by-hop routing using the operations Route and Forwd (see appendix A). Route creates a wrapper

message, 𝑟 , with type rtd, denoting a routing message or command, and embeds the message to be

routed. Tracers then process routing messages by (i) either extracting the embedded message through

the field 𝑟 .emb, e.g. line 53 in ForwdDtc, or (ii) forwarding it to the next tracer using Forwd, e.g. line 55

in ForwdDtc.

5.2.4 Trace Event Routing with Priorty

Hop-by-hop routing does not guarantee that tracers receive events in an order that reflects the correct

SuS execution. This reordering can arise when a tracer collects trace events of a SuS component and

simultaneously receives routed events concerning this component from other tracers. Figure 5.5a gives a

different interleaving to the execution of figure 5.4b to showcase the deleterious effect this race condition

has on the runtime analysis when events are reordered for 𝑇𝑄 . In step 12 , 𝑇𝑄 takes the place of 𝑇𝑃 and

continues tracing process 𝑄 , collecting the event ∗ in step 15 ; this happens before 𝑇𝑄 receives the routed

event ? concerning 𝑄 in step 17 of figure 5.5a. When 𝑇𝑄 analyses trace events from its message buffer in

the order it receives them, as in step 18 , it violates the temporal event ordering determined in figure 5.2b

of example 5.1. A naïve handling of ∗ followed by ? would erroneously mean that 𝑄 receives messages

after it terminates, contradicting definition 5.1.
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1 def Loop•(𝜍,𝑝m)
2 forever do

3 𝑟← next rtd message from buffer ^
4 𝑘← 𝑟 .emb
5 if (𝑘.type= evt)
6 𝜍← HandleEvent•(𝜍,𝑟,𝑝m)
7 else if 𝑘.type= dtc

# dtc routed back from router
8 𝜍←HandleDtc(𝜍,𝑟,𝑝m)

9 def HandleEvent•(𝜍,𝑟,𝑝m)
10 𝑒← 𝑟 .emb
11 if (𝑒.act=_)
12 𝜍← HandleFork•(𝜍,𝑟,𝑝m)
13 else if 𝑒.act= ∗

14 𝜍← HandleExit•(𝜍,𝑟,𝑝m)
15 else if 𝑒.act ∈ { ! ,?}
16 HandleComm•(𝜍,𝑟,𝑝m)

17 def HandleFork•(𝜍,𝑟,𝑝m)
18 𝑒← 𝑟 .emb
19 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
20 Forwd(𝑟,𝑝t)
21 𝜍 .Π← 𝜍 .Π∪{⟨𝑒.tgt,𝑝t⟩}
22 else

23 AnalyseAct(𝑒,𝑝m) # Analyse event

24 𝑝′t← 𝑟 .rtr
25 𝜍← Instrument•(𝜍,𝑒,𝑝′t)

26 return 𝜍

27 def HandleExit•(𝜍,𝑟,𝑝m)
28 𝑒← 𝑟 .emb
29 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
30 Forwd(𝑟,𝑝t)
31 else

32 AnalyseAct(𝑒,𝑝m) # Analyse event

33 𝜍 .Γ← 𝜍 .Γ\{⟨𝑒.src,•⟩} # Remove dead 𝑒.src

34 TryGC(𝜍,𝑝m)
35 return 𝜍

36 def HandleComm•(𝜍,𝑟,𝑝m)
37 𝑒← 𝑟 .emb
38 if ((𝑝t← 𝜍 .Π(𝑒.src)) ≠⊥)
39 Forwd(𝑟,𝑝t)
40 else

41 AnalyseAct(𝑒,𝑝m) # Analyse event

Expect: 𝑟 .emb.iss= self () ∨𝜍 .Π(𝑟 .emb.tgt) ≠⊥
42 def HandleDtc(𝜍,𝑟,𝑝m)
43 𝑐← 𝑟 .emb
44 if ((𝑝t← 𝜍 .Π(𝑐.tgt)) ≠⊥)
45 Forwd(𝑟,𝑝t)
46 else

47 𝜍 .Γ← 𝜍 .Γ\{⟨𝑐.tgt,•⟩}
48 𝜍 .Γ← 𝜍 .Γ∪{⟨𝑐.tgt,◦⟩}
49 𝛾 = {⟨𝑝s,𝑑⟩ | ⟨𝑝s,𝑑⟩ ∈ 𝜍 .Γ,𝑑 = •}
50 if (𝛾 = ∅) # All processes in Γ are detached

51 Loop◦(𝜍,𝑝m) # Switch tracer to ◦mode

52 return 𝜍

Listing 4. Tracer loop that handles priority (•) trace events and message forwarding

Tracers circumvent this issue by prioritising the processing of routed event messages. This captures

the invariant that routed events temporally precede all other events that are to be analysed by the tracer.

A tracer operates on two levels, priority mode and direct mode, respectively denoted by • and ◦ in our

algorithm. Figure 5.5b shows that when in priority mode, 𝑇𝑄 dequeues and handles the routed events ?
and _ (labelled by •) first; ? is analysed in step 23 , whereas _ results in the instrumentation of tracer

𝑇𝑅 in step 25 of figure 5.5b. Note that 𝑇𝑄 can still receive trace events directly from process 𝑄 while

this handling of events underway. However, the direct trace events from 𝑄 are only considered once 𝑇𝑄
transitions to direct mode. Newly-instrumented tracers default to priority mode to process routed events

first (see line 7 in listing 5 of appendix A).

Loop• in listing 4 shows the logic that prioritises the processing of routed events dequeued on line 3

and handled on line 6. The operations HandleFork, HandleExit, and HandleComm in Loop◦ and

Loop• in listings 3 and 4 handle trace events differently. In direct mode, a tracer can (i) analyse trace

events, (ii) forward the events that have been routed its way to neighbouring tracers, or (iii) start routing

events that it directly collects when these need to be handled by other tracers. By contrast, tracers in

priority mode only handle routed trace events according to (i) and (ii), e.g. the branching statement on

lines 19 to 25 in listing 4, and no routing is performed.
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5.2.5 Detaching Tracers

A tracer in priority mode coordinates with the router tracer associated with a particular system process

that it traces to determine when all of the process trace events have been routed to it. Each tracer keeps

a record of the processes it traces in the traced-component map, Γ : Pids ⇀ {◦,•}. Entries to Γ are added

when the tracer starts collecting events for a process (lines 7 and 16 in listing 2) and removed when

processes terminate (lines 31 in listing 3 and 33 in listing 4). Coordination with the router is effected by a

tracer in priority mode for every process in Γ, before the tracer can safely transition to direct mode and

start operating on the events it collects directly. The tracer issues a special detach command message,

𝑐 , with type dtc, to notify the router tracer that it is now responsible for tracing a particular system

process. The dtc command contains the PID of the tracer issuing the request and the PID of the system

process to be detached from the router tracer. These are read respectively via the fields 𝑐.iss and 𝑐.tgt. A

tracer marks a process as detached by updating its mapping 𝑐.tgt ↦→ • in Γ to 𝑐.tgt ↦→ ◦ (see lines 47 and

48 in listing 4).

Figure 5.5b shows 𝑇𝑄 in priority mode sending command ⟨dtc,qt,qs⟩ for 𝑄 , step 13 , after it starts

tracing this process in step 12 . This transaction is implemented by Detach on line 15 in listing 2 (see

appendix A). The dtc command issued by𝑇𝑄 is deposited in the message buffer of (router tracer)𝑇𝑃 after

the events ? and _. 𝑇𝑃 processes the contents of its message buffer sequentially in steps 10 , 17 , 19 , 20

and 28 , and forwards ? and _ to 𝑇𝑄 , steps 18 and 21 . It also routes the dtc command back to the issuer

tracer 𝑇𝑄 , step 29 . 𝑇𝑄 eventually handles the events forwarded by 𝑇𝑃 in the correct order, as stipulated

by figure 5.2b (steps 23 and 24 ). It then handles dtc in step 30 , marking process 𝑄 as detached. This

update on the traced-component map Γ of 𝑇𝑄 is performed by HandleDtc in listing 4 on lines 47 and

48. A tracer transitions to direct mode once all the processes in its Γ are marked as detached; see lines

49 and 50 in listing 4. For the case of 𝑇𝑄 in figure 5.5b, this transition takes place in step 31 when the

single process 𝑄 that it traces is detached. Finally, 𝑇𝑄 handles event ∗ in the correct order in step 32 (as

opposed to step 18 in figure 5.5a).

A detach command ⟨dtc,𝑝t,𝑝s⟩ that is directed to some tracer 𝑝t by a router tracer may perform

multiple hops before it reaches 𝑝t. Every tracer en route to 𝑝t purges the mapping for 𝑝s from its routing

map Π once it forwards dtc to the neighbouring tracer. This clean-up logic is performed by RouteDtc

and ForwdDtc in listing 3. Figure 5.5b does not illustrate this flow. However, we remark that after

receiving dtc,𝑇𝑃 would remove from Π the mapping qs ↦→qt, calling RouteDtc to route back the detach

command ⟨dtc,qt,qs⟩ it receives from 𝑇𝑄 . Similarly, 𝑇𝑃 removes rs ↦→ qt for 𝑅 once it handles ⟨dtc,rt,rs⟩
from 𝑇𝑅 . When 𝑇𝑄 receives the routed detach command ⟨rtd,pt,⟨dtc,rt,rs⟩⟩ from 𝑇𝑃 , it removes rs ↦→ rt

from Π and forwards it, in turn, to 𝑇𝑅 .

5.2.6 Selective Instrumentation

To monitor multiple processes as one component, rather than having a dedicated monitor for each as

in example 5.1, our algorithm uses the instrumentation map discussed in section 4.4. The signature 𝑔,

carried as part of the fork trace event 𝑒 , can be retrieved using the field 𝑒.sig; see table 5.1. Listing 2

shows the instrumentation operations Instrument that apply Φ to 𝑒.sig (lines 3 and 11) to check whether

a process is eligible for instrumentation. When Φ(𝑒.sig) =⊥, no instrumentation is effected, and the

tracer becomes automatically shared by the new process 𝑒.tgt, as per assumptions A3 and A5.
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5.2.7 Garbage Collection

Our outline instrumentation can shrink the tracer choreography by discarding unneeded tracers. Apart

from determining whether a tracer can be terminated based on flagged monitoring verdicts (refer to

introductory part of section 5.2), the algorithm checks that both the routing Π and traced-component

Γ maps of the tracer are empty. A tracer purges process references from Γ when handling exit trace

events via HandleExit◦ and HandleExit• (listings 3 and 4). When Γ= ∅ and a tracer has no processes

to analyse, it could still be required to forward events to neighbouring tracers, i.e., Π≠ ∅. Therefore, the

garbage collection check, TryGC, is performed each time mappings from Π or Γ are removed; see lines

32, 43 and 57 in listing 3, and line 34 in listing 4.

5.3 Correctness Validation

The decentralised outline algorithm of section 5.1 is assessed in two stages. First, we confirm its

implementability by instantiating the core logic of listings 2 to 4 to Erlang, which is tailored for the

demands of reactive systems (see section 1.2). Our development follows a test-driven approach [38]

to ensure that the tracer logic is implemented correctly. Second, we validate the correctness of our

implementation by augmenting the logic given in listings 2 to 4 with runtime checks that guarantee a

number of invariants [22] w.r.t. message routing between tracers.

5.3.1 Implementability

Our implementation of decentralised outline instrumentation maps the tracer processes to Erlang actors,

where the logic detailed in listings 2 to 4 is directly translatable to Erlang code. We implement the

routing (Π), instrumentation (Φ), and traced-component (Γ) maps that represent the tracer state 𝜍 as

Erlang maps for efficient access. The tracer mailbox coincides with the message buffer ^ of section 5.1.1

and figure 3.3 used for asynchronous communication. Every tracer obtains events from components of

the SuS by leveraging the native tracing infrastructure exposed by the EVM [57] that deposits event

messages inside the mailbox of the calling tracer. The EVM tracing complies with assumptions A3

and A4, i.e., a system process can be traced by at most one tracer, although one tracer may trace multiple

processes. To meet assumption A5, we configure the EVM tracing with the set_on_spawn [57] flag that

instructs the infrastructure to atomically set newly-created child processes to use the tracer of their

parent, thereby preventing trace event loss. In addition, we use the send, receive, and procs tracing

flags that inform the EVM to only emit trace event messages for send, receive, spawn (i.e., fork) and exit

process actions. One advantage of the EVM is that it can natively trace any program that is compiled

to BEAM, making our instrumentation algorithm accessible to languages that produce this type of

intermediate object code, e.g. Clojerl [92], Elixir [142]. For instance, our implementation has been used

to verify parts of the RAFT [190] consensus algorithm written in Elixir [162]. The implementation we

give covers both the externalised and internalised analysis variants of figure 5.12.

2The full source code can be found on the GitHub repository: https://github.com/duncanatt/detecter.

https://github.com/duncanatt/detecter
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5.3.2 Invariant Implementation

One salient aspect that our algorithm addresses is that of reporting SuS trace events to the analysis

component in a reliable manner; this is demanded by constraint C7. The invariants listed below ensure

the correct handling of events by tracers. Together with the core logic of listings 2 to 4, these enable us

to reason about general properties the tracer choreography should observe. For instance, our algorithm

guarantees that ‘every trace event that is routed between tracers eventually reaches the intended tracer’,

that ‘the monitor choreography grows dynamically’, and that ‘redundant tracers are always garbage

collected’. We implement these invariant checks in the form of assertions. The invariants below make

use of the following two notions introduced earlier:

• direct trace event (recalled from section 5.2.4): an event that is not routed but collected straight from a

system process via the tracing infrastructure.

• router tracer (recalled from section 5.2.3): a tracer that receives the trace events of a system process

that are meant to be handled by a another tracer.

Tracer choreography invariants Ensure that the dynamic trace event routing topology between tracers

always maintains a DAG.

I1 A tracer has a corresponding analyser.

I2 The root tracer has no router tracers.

I3 A tracer never terminates unless its routing map, Π, and traced-component map, Γ, are empty.

I4 A tracer never adds a process that already exists in its traced-component map Γ.

I5 A tracer never removes a non-existing process from its traced-component map Γ.

I6 A tracer acts on a _ event by adding the process to its traced-component map Γ. Depends on

invariant I4.

I7 A tracer acts on an ∗ event by removing the process from its traced-component map Γ. Depends on

invariant I5.

I8 A tracer never adds a route that already exists in its routing map Π.

I9 A tracer never removes a non-existing route from its routing map Π.

I10 A tracer acts on a _ event by adding a route to its routing map Π. Depends on invariant I8.

I11 A router tracer that routes a _ event adds a route to its routing map Π. Depends on invariant I8.

I12 A tracer that forwards a _ event adds a route to its routing map Π. Depends on invariant I8.

I13 A router tracer that routes a dtc command removes a route from its routing map Π. Depends on

invariant I9.

I14 A tracer that forwards a dtc command removes a route from its routing map Π. Depends on invariant I9.

Message routing invariants Ensure that trace events are reported to analysers per definition 5.1, and

depend on the guarantees given by invariants I1 to I14

I15 A tracer never routes or forwards a message unless a route exists in its routing map Π. Depends on

invariants I10 to I12.

I16 A tracer in • mode prioritises routing messages until it switches to ◦ mode.

I17 A tracer in • mode transitions to ◦ mode only when all of the processes in its traced-component map

Γ are marked as ◦ or Γ is empty.
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I18 The total amount of dtc commands a tracer issues is equal to the sum of the number of processes

in its traced-component map Γ and the number of terminated processes for the tracer. Depends on

invariants I6 and I7.

I19 A tracer in ◦ mode acts on a direct event by analysing or routing it. Depends on invariants I1 and I15.

I20 A tracer in ◦ mode acts on a routed event by forwarding it. Depends on invariant I15. Analysing a

routed trace event in ◦ mode implies that the tracer dequeued a priority event, violating invariant I16.

I21 A tracer in ◦ mode acts on a routed dtc command by forwarding it. Depends on invariants I14 and I15.

Handling a routed command in ◦mode implies that the tracer dequeued a priority command, violating

invariant I16.

I22 A tracer in • mode acts on a routed event by analysing or forwarding it, i.e., it never routes events.

Only tracers in ◦mode can route events, and these events are direct events. Routing in •mode implies

that the tracer dequeued a non-priority event, violating invariant I16.

I23 A tracer in • mode acts on a routed dtc command by handling or forwarding it, i.e., it never routes

commands. Depends on invariants I14 and I15. Only (router) tracers in ◦ mode can route commands,

and these are received directly from the tracers wishing to detach system processes from the router.

Routing in • mode implies that the tracer dequeued a non-priority command, violating invariant I16.

I24 A router tracer that receives a dtc command must route it. Depends on invariants I13 and I15. If routing

is not possible, the command was issued by mistake.

We implement a suite of unit tests that exhaustively operate on the invariants listed above. These tests

ascertain that race conditions are correctly handled by the tracer choreography while it simultaneously

analyses trace events. Other tests validate the elasticity aspect of our algorithm in terms of the dynamic

instrumentation of tracers and corresponding garbage collection. To drive these tests, we built a

harness that can load and replay pre-scripted interleaving scenarios for various systems, such as the

one of example 5.1. The harness adheres to assumptions A3 to A5 to emulate the native EVM tracing

infrastructure. Our comprehensive suite of scenarios is specifically designed to exercise the core logic in

listings 2 to 4 and induce edge-case behaviour.

We also use the invariants above in large-scale general tests that delegate the generation of interleaved

executions directly to the EVM. Our aim is twofold: (i) we instrument independent monitors to track

random groupings of processes, which implicitly controls the size of the traced-component map Γ, and

(ii) the interleaving of processes induced by the EVM schedulers dictate how the routing map Π of each

monitor evolves over time. This induces dynamic arrangements in the monitor choreography DAG and

provides us with high assurances that the algorithm of listings 2 to 4 and its translation to Erlang code

is correct. We accomplish (i) by overloading our instrumentation map definition of section 4.4, Φ(𝑔), to

admit a value, Pr(instr), that controls the probability that a function signature 𝑔 requires a monitor to be

instrumented. This overload, ΦPr(instr) (𝑔), is modelled on Bernoulli trial [191]. It returns a monitor 𝑚 for

𝑔 whenever 𝑋 ≤ Pr(instr), i.e., the Bernoulli trial succeeds, or ⊥ otherwise; 𝑋 is drawn from a uniform

distribution on the real interval [0,1]. Gradually increasing the value of the parameter Pr(instr) enables

us to monitor a SuS

• centrally, via a singleton monitor, i.e., Pr(instr) = 0,

• in a fully-decentralised fashion with one monitor per process, such as example 5.1, i.e., Pr(instr) = 1, or

• as randomised groups of processes with independent monitors for each group, i.e., 0 < Pr(instr) < 1.
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For these tests, we employ the benchmarking framework described in the next chapter, using the

same high loads as in chapter 7 (e.g. ≈ 40M trace events). The scalability and efficiency facets of our

implemented algorithm are extensively treated in the latter chapter.

5.4 Discussion

This chapter proposes a first decentralised outline instrumentation approach for monitoring reactive

systems. Section 5.2 details a concrete algorithm, describing how the instrumentation of a component-

based SuS is attained in a scalable fashion by relying exclusively on trace events exhibited by the running

system. Our reactive design sets itself apart from the state of the art in these aspects. It:

• asynchronously instruments the SuS without modifying it to minimise interference (responsive),

• delineates the SuS and monitor components to allow for independent failure (resilient),

• does not assume a fixed number of SuS components, but scales accordingly (elastic), and

• reorganises the monitor choreography dynamically in response to SuS trace events (message-driven).

The algorithm leverages the tracing concepts commonly provided by tracing infrastructures, which

makes it applicable in cases where inlining cannot be used. This flexibility comes at the expense of

introducing asynchrony between the SuS and monitor components, complicating our RV set-up. Our

exposition in section 5.2 identifies the intricacies that the algorithm addresses in order to guarantee that

trace events of the SuS are reported and analysed correctly (listings 2 to 4). We express our algorithm

in terms of general software engineering concepts (e.g. encapsulated component states, separation of

the routing and analysis concerns) to facilitate its adoption to a variety of settings and technologies.

The algorithm presented is evaluated in two respects. First, section 5.3 confirms the implementability of

choreographed outline instrumentation. It describes how our general algorithm of listings 2 to 4 can

be naturally mapped to a tool implementation in a mainstream concurrent language. We augment this

with an account of the principled approach employed to ensure the correct translation of our algorithm

to code. Second, the claims on the reactive characteristics of our algorithm and its implementation are

corroborated further via the empirical evaluation of chapter 7.

Our solution adopts a principle similar to the black-box-style of monitoring used by APM tools

that are geared towards maintaining large-scale decentralised software. APMs operate externally to

the SuS, similar to our approach. They are used extensively to identify and diagnose performance

problems such as bottlenecks and hotspots; they presently have an edge on static analysis tools for

critical path analysis [226] and unearthing performance anti-patterns [213, 214]. The methods proposed

in section 5.2 are general enough to be applied—at least in part—to APM tools in order to make them

more decentralised. Although our algorithm is implemented in Erlang, we argue that it is still sufficiently

general to be instantiated to other language frameworks (e.g. Elixir, Akka for Scala [189], Thespian [194]

for Python [173]) that follow constraints C1 to C4 and assumptions A1 to A5. In particular, it can be used

by RV tools that target other platforms, such as the JVM.

Hyperlogics [66] have recently emerged as an expressive formalism for describing complex properties

about decentralised systems (e.g. non-interference, non-inference, etc.). Broadly, these logics can specify

conditions across distinct traces, where quantifications range over potentially infinite trace domains. One

branch in this line of study is the verification of such properties at runtime (e.g. [44, 106, 12]). Although

we are unaware of any attempts at runtime verifying such properties using outline instrumentation,
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the inherent dynamicity required to analyse an unbounded number of traces would certainly make our

instrumentation method applicable in this setting. Our approach from section 5.2 already disentangles the

instrumentation from the analysis, thus providing a platform for plugging new analyses that implement

monitoring for hyperproperties.

5.4.1 Related Work

There are other bodies of work that address decentralised monitoring besides the ones already discussed

(see also section 1.1.2). The majority of these studies instrument monitors via inlining. For instance, Sen

et al. [210] study decentralised monitors that are attached to different threads to extract and analyse

trace events internally; see figure 5.1b. In their earlier work, Sen et al. [208] investigate the use of

decentralised monitors on distributed SuS components, focussing on the communication efficiency

between monitors. Another line of research by Scheffel and Schmitz [203] uses the same instrumentation

approach as [210, 208], but employs a past-time three-valued temporal logic in contrast to the two-valued

logic used in the former studies. Efficient communication is also the focus of Mostafa and Bonakdarpour

[180]. In their setting, the SuS consists of distributed asynchronous processes that interact via message-

passing over reliable channels. Similar to our case, their monitoring algorithm does not rely on a global

notion of timing (constraint C1), nor does it tackle aspects of failure (assumptions A1 and A2). The work

by Basin et al. [31] is one of the few that considers distributed system monitoring where components and

network links may fail. While their algorithm does not employ a global clock, it is based on the timed

asynchronous model for distributed systems [75] that assumes highly-synchronised physical clocks

across nodes. In a different spirit, [45, 110] address the problem of crashing monitors; this is something

that we presently do not address, although our decentralised set-up enables us to fail partially (see

section 5.3).

Other efforts for decentralised monitoring, such as [138, 87, 148, 207], weave the SuS with code

instructions that extract trace events and delegate their analysis to independent processes—this mirrors

our externalised event analysis variant of figure 5.1b. While these approaches are occasionally classified

as outline [100], they do not treat the SuS as a black box, making them prone to the shortcomings of

inlining discussed in section 2.1.4. Crucially, the aforecited works assume a static system arrangement,

which spares them the challenges of dealing with the dynamic reconfiguration of outline tracers and

reordering of tracer events.

Tools such as [185, 219] target the Erlang ecosystem. In Neykova and Yoshida [185], the authors

propose a method that statically analyses the program communication flow that is specified in terms of

a multiparty protocol. Monitors attached to system processes then check that the messages received

coincide with the projected local type (similar to the analysis conducted by our monitors), and in the case

of failure, the associated processes are restarted. The authors show that their recovery algorithm induces

less communication overhead and improves upon the static process structure recovery mechanisms

offered by the Erlang/OTP platform. Similarly, Attard and Francalanza [219] focus on decentralised

outline monitoring in a concurrent setting, but assume a static SuS. By contrast to Neykova and Yoshida

[185], they leverage the native tracing infrastructure offered by the EVM, as done in other tools such

as [113, 21, 222, 51, 71] for centralised monitoring set-ups.

Schneider et al. [205] follow a different approach to the ones mentioned thus far to achieve indepen-

dent monitors. Unlike our setting that concentrates on local properties (see section 1.2), the authors
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tackle the general monitoring case where slicing can lead to event duplication that, in turn, inflates

runtime overhead. The set-up proposed by the authors is external to the SuS and extends their prior

work [32] that targets scalable offline monitoring. It adapts database hash-based partitioning techniques

to the monitoring setting, in order to alleviate the overhead induced by slicing. These techniques are

implemented in an automatic data slicer that runs on Apache Flink, where trace event streams are

obtained via log files or TCP sockets. They can achieve scalability by using data parallelisation to treat

monitoring algorithms as a black box, running them on different segments of the trace. The monitoring

algorithm of listing 1 that we attach to tracers is an instantiation of this approach. One aspect that

distinguishes our setting from that of Schneider et al. [205] is that the event source they use is sequential,

whereas ours becomes concurrent when tracers invoke the operation Preempt to partition the trace. Our

trace event routing detailed in section 5.2 ensures that trace events are reported to the correct monitors,

despite the reordering that may arise from these partitions. We note that the runtime overhead in op. cit.

is less detrimental to the SuS since their RV set-up is deployed externally, which is not possible in our

case. It is worth mentioning that for their evaluation, Schneider et al. [205] develop a tool to emulate

online monitoring scenarios by replaying them from a file; this approach is analogous to the one we use

when evaluating our algorithm in section 5.3.2.



6 Reactive Runtime Monitoring Benchmarking

Instrumenting a SuS with monitors induces inevitable runtime overhead that should be kept minimal

since this impacts the applicability of monitoring tools [95, 100]. While the worst-case complexity

bounds for monitor-induced overheads can be calculated via standard methods (see, e.g. [154, 44, 7,

114]), benchmarking is, by far, the preferred method for assessing these overheads [25, 119]. One

reason for this is that benchmarks tend to better represent the overhead observed in practice [123, 49].

Benchmarking also provides a common platform for gauging workloads, making it possible to compare

different monitoring tools, or rerun experiments to reproduce and confirm existing results.

This chapter presents a benchmarking framework for evaluating runtime monitoring tools written for

reactive component systems. The framework we describe generates synthetic system models following

the master-worker paradigm [202]. This architecture is pervasive in both distributed (e.g. Big Data

frameworks, render farms) and concurrent (e.g. web servers, thread pools) system settings [217, 121, 77,

227], which justifies our aim in building a benchmarking tool targeting this paradigm. We:

• detail the design of a configurable benchmarking tool that emulates various master-worker models

under commonly-observed load profiles and gathers relevant metrics that give a multi-faceted view of

runtime overhead, Section 6.1;

• demonstrate that our synthetic benchmarks can be tuned to approximate the realistic behaviour of

web server traffic with high degrees of fidelity and repeatability, Section 6.4;

• present a case study that (i) shows how the load profiles and parametrisability of benchmarks can

produce edge cases that can be measured through our performance metrics to asses runtime monitoring

tools in a comprehensive manner, and (ii) confirms that the results from (i) coincide with those obtained

via a real-world use case using OTS software, Section 6.5.

6.1 A Configurable Benchmark Design

Our benchmarking tool addresses the limitations discussed in section 1.1.3. The set-up scales to accom-

modate high loads and emulates a range of system models that can be subjected to various load profiles

that are typically observed in practice. It collects three core metrics to give a comprehensive view of

runtime overhead that captures the operation of reactive components, namely the

(i) mean response time, measured in milliseconds (ms), that captures how the reactiveness of the SuS

is affected when monitors are introduced,

(ii) mean memory consumption, recorded in GB, that gauges the impact monitors have on the SuS, and

(iii) mean scheduler utilisation, as a percentage of the total available processing capacity, that shows

how well the monitors under evaluation maximise its use.

66
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While the mean execution duration, measured in seconds (s), is the least relevant metric (see section 1.1.3),

we track it in our experiments to indicate to readers the amount of time that monitors require to complete

their runtime analysis. Henceforth, we use the shortened metric name (e.g. response time instead of

mean response time, etc.) for the sake of brevity.

Our tool considers master-worker architectures, where one central process, called the master, creates

and allocates tasks to worker processes [202]. Workers process tasks concurrently and relay the result to

the master when ready; the latter then combines these results to yield the final result. Each worker is an

abstraction of sets of cooperating processes that can be treated as a single unit. We focus on reactive

architectures that execute on a single node, although our design adheres to the three criteria that facilitate

its extension to a distributed setting. Specifically, master and worker components: (i) share neither a

common clock, (ii) nor memory, and (iii) communicate exclusively via asynchronous messages. Our

model assumes that communication is reliable and components do not fail (see section 1.2)1. Table 6.1 on

page 70 summarises the benchmark parameters that are described next in sections 6.1.1 to 6.1.3 and 6.1.5.

6.1.1 Load Generation

Load on the system is induced by the master when it creates worker processes and allocates tasks. The

total number of workers in one benchmark run can be set via the parameter 𝑛. Tasks are allocated to

worker processes by the master and consist of one or more work requests that a worker receives, handles,

and transmits back. A worker terminates its execution when all of its allocated work requests have

been processed and acknowledged by the master. The number of work requests that can be batched in a

task is controlled by the parameter 𝑤 ; the actual batch size per worker is then drawn randomly from

a normal distribution with mean ` =𝑤 and standard deviation 𝜎 = `×0.02. This induces a modicum

of variability in the amount of work requests exchanged between the master and worker processes.

The master and workers communicate asynchronously: an allocated work request is delivered to the

incoming task queue of a worker process where it is eventually handled. Work responses issued by a

worker are queued and processed similarly on the master.

6.1.2 Load Configuration

We consider three load profiles (see figure 6.5 for examples) that determine how the creation of workers is

distributed along the load timeline, specified by the parameter 𝑡 . The timeline is modelled as a sequence

of discrete logical time units that represent instants at which a new set of workers is created by the master.

Steady loads replicate executions where a system operates under stable conditions. These are modelled

on a homogeneous Poisson distribution with rate _, specifying the mean number of workers that are

created at each time instant along the load timeline with duration 𝑡 = ⌈𝑛/_⌉. Pulse loads emulate settings

where a system experiences gradually increasing load peaks. The Pulse load shape is parametrised by

𝑡 and the spread, 𝑠 , that determines how slowly or sharply the system load increases as it approaches

its maximum peak, halfway along 𝑡 . Pulses are modelled on a normal distribution with ` = 𝑡/2 and

𝜎 = 𝑠 . Burst loads capture scenarios where a system is stressed due to load spikes; these are based on a

log-normal distribution with ` = ln(𝑚2/√𝑝2+𝑚2) and 𝜎 =
√︁

ln(1+𝑝2/𝑚2), where𝑚 = 𝑡/2, and parameter

1This coincides with our process model introduced in section 5.1 that fulfils constraints C1 to C4 and assumptions A1 and A2.
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𝑝 is the pinch controlling the concentration of the initial load burst.

6.1.3 Wall-Clock Time

A load profile created for some logical timeline 𝑡 is put into effect by the master process when the system

starts running. The master does not create the worker processes that are set to execute in a particular

time unit all at once, since this naïve strategy risks saturating the system, deceivingly increasing the load.

In following this strategy, the system may become overloaded not because the mean request rate is high,

but because the created workers overwhelm the master when they send their requests simultaneously.

We address this issue by introducing the notion of concrete time that maps one discrete time unit in 𝑡 to

wall clock time period, 𝜋 . The parameter 𝜋 is given in ms, and defaults to 1000 ms.

6.1.4 Worker Scheduling

The master process employs a scheduling scheme to distribute the creation of workers uniformly across

the period 𝜋 . It makes use of three queues: the Order queue, Ready queue, and Await queue, denoted

by 𝑄O, 𝑄R, and 𝑄A respectively. 𝑄O is initially populated with the load profile, step 1 in figure 6.1a. A

load profile consists of an array, 𝑙1,𝑙2,. . .,𝑙𝑡 , with 𝑡 elements—each corresponding to a discrete time instant
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in 𝑡—where the value 𝑙𝑖 of every element indicates the number of workers to be created at that instant.

Workers,𝑊1,𝑊2,. . .,𝑊𝑛 , are scheduled and created in rounds, as follows. The master picks the first element

from 𝑄O to compute the upcoming schedule, step 2 , that starts at the current time, 𝑐 , and finishes at

𝑐 +𝜋 . A series of 𝑙𝑖 time points, 𝑝1,𝑝2,. . .,𝑝𝑙𝑖 , in the schedule period 𝜋 are cumulatively calculated by

drawing the next 𝑝𝑘 from a normal distribution with ` = ⌈𝜋/𝑙𝑖⌉ and 𝜎 = `×0.1. Each time point stipulates

a moment in wall-clock time when a new worker𝑊𝑗 is to be created; this set of time points is monotonic

and constitutes the Ready queue, 𝑄R, step 3 . The master checks 𝑄R, step 4 in figure 6.1b, and creates

the workers whose time point 𝑝𝑘 is smaller than or equal to the current wall-clock time2, steps 5 and
6 in figure 6.1b. The time point 𝑝𝑘 of a newly-created worker is removed from 𝑄O, and a corresponding

entry for the worker 𝑊𝑗 is appended to the Await queue 𝑄A; this is shown in step 7 for 𝑊1 and 𝑊2.

Workers in 𝑄A are now ready to receive work requests from the master process, e.g. step 8 . 𝑄A is

traversed by the master at this stage so that work requests can be allocated to existing workers. The

master continues processing queue 𝑄R in subsequent rounds, creating workers, issuing work requests,

and updating 𝑄R and 𝑄A accordingly, as shown in steps 9 to 13 in figure 6.1c. At any point, the master

can receive responses, e.g. step 17 in figure 6.1d; these are buffered inside the incoming task queue of the

master process and handled once the scheduling and work allocation phases are complete. A fresh batch

of workers from 𝑄O is scheduled by the master whenever 𝑄R becomes empty, step 15 , and the described

procedure is repeated. The master stops scheduling workers when all the entries in 𝑄O are processed. It

then transitions to work-only mode, where it continues allocating work requests and handling incoming

responses from workers.

6.1.5 System Responsiveness

Systems generally respond to load with differing rates, due to the computational complexity of the task at

hand, IO, or slowdown when the system itself becomes gradually loaded. We simulate these phenomena

using the parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣). The master interleaves the processing of work requests

to allocate them uniformly among the various workers: Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) bias this behaviour.

Concretely, Pr(𝑠𝑒𝑛𝑑) controls the probability that a work request is sent by the master to a worker,

whereas Pr(𝑟𝑒𝑐𝑣) determines the probability that a work response received by the master is processed.

Sending and receiving is turn-based and modelled on a Bernoulli trial [191]. The master picks a worker

𝑊𝑗 from 𝑄A and sends at least one work request when 𝑋 ≤ Pr(𝑠𝑒𝑛𝑑), i.e., the Bernoulli trial succeeds;

𝑋 is drawn from a uniform distribution on the interval [0,1]. Further requests to the same worker

are allocated following this scheme (steps 8 , 13 and 20 in figure 6.1) and the entry for 𝑊𝑗 in 𝑄A is

updated accordingly with the number of work requests remaining. When 𝑋 >Pr(𝑠𝑒𝑛𝑑), i.e., the Bernoulli

trial fails, the worker misses its turn, and the next worker in 𝑄A is picked. The master also queries its

incoming task queue to determine whether a response can be processed. It dequeues one response when

𝑋 ≤ Pr(𝑟𝑒𝑐𝑣), and the attempt is repeated for the next response in the queue until 𝑋 > Pr(𝑟𝑒𝑐𝑣). The

master signals workers to terminate once it acknowledges all of their work responses (e.g. step 14 ). Due

to the load imbalance that may occur when the master becomes overloaded with work responses relayed

by workers [202], dequeuing is attempted |𝑄A | times. This encourages an even load distribution in the

system as the number of workers fluctuates at runtime.

2We assume that the platform scheduling the master and worker processes is fair.
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Parameter Description

Master-Worker Model

𝑛 Total number of worker processes

𝑤 Number of work requests batched in a task

𝑡 Load timeline (not specified for Steady loads)

𝜋 Wall clock time period

Load Profile

_ Steady rate

𝑠 Pulse spread

𝑝 Burst pinch

System Reactiveness

Pr(𝑠𝑒𝑛𝑑) Probability that the master issues a work request

Pr(𝑟𝑒𝑐𝑣) Probability that the master dequeues a work response

Table 6.1. Load profile and system reactiveness configuration parameters for benchmarks

6.2 Implementability

We instantiate the set-up of section 6.1 in Erlang. Our implementation maps the master and worker

processes to actors, where workers are forked by the master via the Erlang BIF spawn(); in Akka and

Thespian ActorContext.spawn() and Actor.createActor() can be respectively used to the same end.

The work request queues for both master and worker processes coincide with actor mailboxes. We

abstract the task computation and model work requests as Erlang messages. Workers emulate no delay,

but respond instantly to work requests once these have been processed; delay in the system can be

induced via parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) introduced in section 6.1.5. To maximise efficiency, the

Order, Ready, and Await queues used by our scheduling scheme are maintained locally within the master.

The master process keeps track of other details, such as the total number of work requests sent and

received to determine when the system should stop executing. For the purposes of experiment taking,

we extend the parameters of table 6.1 with a seed parameter, 𝑟 , to fix the Erlang pseudorandom number

generator to output reproducible number sequences.

6.3 Measurement Collection

The measurement of application performance is closely linked with the functionality offered by the

platform on which benchmarks execute, and one typically leverages native operations to maintain

low overhead levels. Our implementation relies on the BIFs provided by Erlang to gather the metrics

identified in section 6.1 (response time, memory consumption, and scheduler utilisation). These are

collected centrally via a designated process, called the Collector, that samples the runtime to obtain

periodic snapshots of the execution environment (see figure 6.2). We use global sampling and avoid
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Figure 6.2. Collector tracking the round-trip time for work requests and responses

tracking the resource usage per process to minimise any potential perturbations that may be induced by

our measurement taking. This is crucial in high-concurrency settings where components tend to be

very sensitive to latency [127]. Our sampling frequency is set to 500 ms. This figure was determined

empirically, whereby the measurements gathered are neither too coarse, nor excessively fine-grained

such that the sampling itself affects the runtime. Every sampled snapshot combines the aforementioned

metrics and formats them as records that are written asynchronously to disk to minimise IO delays.

The memory and scheduler readings are gathered via the EVM. We record the scheduler utilisation,

rather than the CPU used by the EVM since the latter keeps scheduler threads momentarily spinning to

avoid going to sleep and impacting latency [132]. The overall system responsiveness is reflected in the

mean response time metric. To track this value, the Collector exposes a hook that the master uses to

obtain unique timestamps, step 1 in figure 6.2. These are embedded in every work request message the

master issues to workers. Each timestamp enables the Collector to track the time taken for a specific

message to travel from the master to a worker and back, including the time it spends in the mailbox of

the master until dequeued, i.e., the round-trip in steps 2 to 5 . To efficiently compute the response time,

the Collector samples the total number of messages exchanged between the master and workers and

calculates the running mean using the algorithm by Welford [224].

6.4 Benchmark Expressiveness and Coverage

We tune the synthetic system models generated by our benchmarking tool implementation via a series

of empirical experiments to evaluate it in several ways. Section 6.4.2 discusses sanity checks for its

measurement collection mechanisms and section 6.4.3 assesses the repeatability of the results obtained

from synthetic system model executions. Sections 6.4.4 and 6.4.5 provide evidence that the tool is

sufficiently expressive to cover a number of execution profiles that emulate realistic scenarios. In

particular, we establish a set of benchmark configuration parameter values to create experiment set-ups

whose behaviour approximates that of web server systems typically found in practice.

6.4.1 Experiment Set-up

An experiment consists of ten benchmarks. Each experiment is performed by running the benchmarked

set-up with increasing loads, applied in steps of 𝑛/10, where 𝑛 is the total number of worker processes

(see table 6.1). Every benchmark is executed on a fresh instance of the EVM to ensure that the runtime

environment is uninfluenced by previous runs. All experiments in this chapter are conducted on an Intel
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Core i7 M620 64-bit machine with 8GB of memory, running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.

The parameters of the benchmarking tool can be configured to model a range of master-worker scenar-

ios. However, not all of these configurations yield meaningful system models in practice. For example,

setting Pr(𝑠𝑒𝑛𝑑) = 0 does not enable the master to allocate work requests to workers; with Pr(𝑠𝑒𝑛𝑑) = 1,

the work allocation is enacted sequentially, defeating the purpose of a concurrent master-worker system.

The objective is thus, to tune the benchmarking tool to generate different models of the master-worker

set-up and find valid parameter values that enable our experiments to adequately approximate the

behaviour of realistic web server systems. Our experiments are fixed with 𝑛 = 500k workers and 𝑤 = 100

work requests per worker. This configuration generates ≈𝑛×𝑤 × (work requests and responses)= 100M

message exchanges between the master and worker processes. We initially set Pr(𝑠𝑒𝑛𝑑) = Pr(𝑟𝑒𝑐𝑣) = 0.9

and focus on Steady loads (i.e., Poisson process) since these can be replicated using industry-strength

load testing tools such as Tsung [186], Gatling [74] and JMeter [109]. Figure 6.5 (left) shows the load

applied at each benchmark run, e.g. on the tenth run, the benchmark creates ≈ 5k workers/s. In all

experiments, the total loading time is set to 𝑡 = 100s.

6.4.2 Measurement Precision

A series of trials were conducted to select the appropriate sampling window size for measuring the

response time. This step is crucial, as it directly affects the capability of the benchmark to scale in

terms of its number of worker processes and work requests while remaining responsive. The sampling

frequency described in section 6.3 (see also figure 6.2) was calibrated by taking various window sizes

over numerous runs for different load profiles ranging from ≈ 10k to ≈ 1M workers. These results were

compared to the actual mean calculated on all the work request and response messages exchanged

between master and workers. Window sizes close to 10 % yielded the best results (≈±1.4% discrepancy

from the actual response time). Smaller window sizes produced excessive discrepancy; larger sizes

induced noticeably higher system overhead. The precision of our measured samples, including the

memory consumption and scheduler utilisation figures was cross-checked against readings obtained

from the Erlang Observer tool [57] to confirm that these coincide.

6.4.3 Result Repeatability

Data variability affects the repeatability of experiments [103] and plays a role when determining the

number of repeated readings,𝑚, required before the data measured is deemed sufficiently representative.

Choosing the lowest𝑚 is crucial when experiment runs are time-consuming. The coefficient of variation

(CV) [81], i.e., the ratio of the standard deviation to the mean, CV = 𝜎/𝑥 , can be used to establish the

value of𝑚 empirically, as follows. Initially, the CV𝑚 for one batch of experiments for some number of

repetitions 𝑚 is calculated. The result is then compared to the CV𝑚′ for the next batch of repetitions

𝑚′ =𝑚+𝑏, where 𝑏 is the batch increment. When the difference between successive CV metrics, 𝑚′ and

𝑚, is sufficiently small (for some 𝜖), the value of 𝑚 is selected, otherwise, the described procedure is

repeated with𝑚′. Crucially, the condition CV𝑚′ −CV𝑚 < 𝜖 must hold for all the variables measured in

the experiment before𝑚 can be fixed. For the results presented next, the CV values have been calculated

manually. The mechanism that determines the CV automatically is left for future work.

We minimise the data variability between experiments by seeding the Erlang pseudorandom number
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generator (parameter 𝑟 in section 6.2) with a constant value. Fixing the seed typically requires fewer

repeated runs before the metrics of interest—response time, memory consumption, and scheduler

utilisation—converge to an acceptable CV. We conduct experiments set with 𝑚 ∈ {3,6,9} repetitions

to determine the least 𝑚 that meets this condition. We obtained the CV values of 0.52 %, 0.15 %, and

0.17 % for the response time, memory consumption, and scheduler utilisation respectively using three

repeated runs with threshold 𝜖 ≈ 0.04% against𝑚 = 3. Since these figures are sufficiently low, we adopt

the number of repetitions 𝑚 = 3 for all experiment runs in the sequel. Note that fixing the seed still

permits our models to exhibit a degree of variability that stems from the inherent interleaved execution

of components due to process scheduling.

6.4.4 Response Time Tuning

The responsiveness of master-worker systems correlates with the time each worker spends idle, which,

in turn, affects the capacity of the system to handle workloads. For instance, the less frequently the

master assigns tasks (i.e., low throughput), the larger the portion of idle workers and the shorter the

response time (i.e., low latency). As this aspect can influence the results obtained when assessing runtime

overhead, we use the parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣) to regulate the speed with which the system

reacts to load (refer to section 6.1.5). We illustrate how these parameters affect the overall performance

of master-worker models set up with Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) ∈ {0.1,0.5,0.9}. Figure 6.3 shows the results,

where each performance metric (e.g. memory consumption, 𝑦-axis) is plotted against the total number

of workers for ten benchmarks, starting at 50k up to 500k (𝑥-axis). Our charts also plot the execution

duration for reference.

With Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.1, the system has the lowest response time out of the three configurations

(bottom left), as indicated by the gradual linear increase of the plot. This confirms the fact that smaller

loads enable worker processes to rapidly handle incoming work requests. As expected, this prolongs the

execution duration, when compared to that of the system set with Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) ∈{0.5,0.9} (bottom

right). The effect of idle workers can be gleaned from the relatively lower scheduler utilisation as well

(top left). Idling increases the consumption of memory (top right) since the worker processes created by

the master typically are kept alive for longer periods. By contrast, the plots set with Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) ∈
{0.5,0.9} exhibit markedly lower gradients in the memory consumption and execution duration charts;

corresponding linear slopes for these two settings can be observed in the response time chart. This

indicates that values between 0.5 and 0.9 yield system models that (i) consume tolerable amounts

of memory, (ii) execute to completion in a reasonable amount of time, and (iii) maintain a decent

response time. Master-worker architectures are typically employed in high throughput, low latency

settings, and using values smaller than 0.5 goes against this principle. In what follows, we opt for

Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.9 due to the negligible differences in the response time and execution duration

between Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.5 and Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣)=0.9, but reasonably low memory consumption

achieved using the latter setting.

6.4.5 Veracity of the Synthetic Models

Our benchmarks can be configured to closely model realistic web server traffic where the request

intervals observed at the server are known to follow a Poisson process [126, 168, 144]. The probability
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Figure 6.3. System reactiveness benchmarks modelled by Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣)

distribution of the response time of web application requests is generally right-skewed and approximates

log-normal [126, 64] or Erlang distributions [144]. We conduct three experiments using Steady loads

fixed with 𝑛 = 20k for Pr(𝑠𝑒𝑛𝑑) = Pr(𝑟𝑒𝑐𝑣) ∈ {0.1,0.5,0.9} to establish whether the response time in

our system set-ups follows the aforementioned distributions. Our results, summarised in figure 6.4,

are obtained by estimating the parameters for a set of candidate probability distributions (e.g. normal,

log-normal, gamma, etc.) using maximum likelihood estimation [200] on the response time obtained

from each experiment. We then perform goodness-of-fit tests on these parametrised distributions

using the Kolmogorov-Smirnov test, selecting the most appropriate response time fit for each of the

three experiments. The fitted distributions in figure 6.4 indicate that the response time of our system

models concurs with the findings reported in [126, 64, 144]. This makes a strong case in favour of our

benchmarking tool striking a balance between the realism of benchmarks based on OTS programs and

the controllability offered by synthetic benchmarking. Lastly, we point out that figure 6.4 matches the

observations made in figure 6.3, which show an increase in the response time as the system throughput

increases. This is evident in the histogram peaks that grow shorter as Pr(𝑠𝑒𝑛𝑑)=Pr(𝑟𝑒𝑐𝑣) progresses
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from 0.1 to 0.9.

6.4.6 Load Profile Models

Our benchmarking tool implementation can generate the load profiles introduced in section 6.1.2, enabling

us to gauge the behaviour of monitored systems under varying forms of strain. These loads make it

possible to mock specific system scenarios that exercise different aspects of the monitoring tool being

considered. For example, a benchmark configured with load bursts could uncover buffer overflows in a

particular monitoring tool implementation that only arise under stress, when the length of the trace

event processing queue exceeds some preset length. Figure 6.5 shows the distribution of Steady, Pulse,

and Burst load that the master induces it creates worker processes with 𝑛 = 500k.

6.5 Benchmark Validation

We demonstrate how our benchmarking tool can be used to assess the runtime overhead comprehensively

via a concurrent RV case study. By controlling the benchmark parameters and subjecting the system to

specific workloads, we show that our multi-faceted view of overhead reveals nuances in the observed

runtime behaviour, benefiting the interpretation of empirical results. We further assess the veracity

of these synthetic benchmarks against the overhead measured from a use case that is set up with

industry-strength OTS software.

6.5.1 Runtime Monitoring Set-up

Our experiments use the implementation of the monitoring inlining tool discussed in section 4.5. The

monitor code instructions that the tool injects share the process space of components of the SuS, which

induces minimal runtime overhead. This enables us to scale benchmarks to considerably high loads,

even on our modest experiment set-up of section 6.4.1.

We perform two sets of experiments. For the experiments of section 6.5.2 that focus on the synthetic

master-worker models generated by our benchmarking tool, we use properties that ensure the correct

operation of worker processes, along with properties that certify the validity of the tasks that workers

receive from the master. Readers are directed to appendix B.1 for details about these properties. Sec-

tion 6.5.3 considers the Cowboy web server introduced in section 4.6. The client request delegation that

Cowboy performs to Ranch protocol handlers follows closely our master-worker set-up of section 6.1,
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Figure 6.6. Master-worker and Cowboy-Ranch benchmarks instrumented with inline local monitors

which abstracts minutiae such as TCP connection management and HTTP protocol parsing. We monitor

fragments of the Cowboy-Ranch communication protocol used to handle client requests, the particulars

of which is found in appendix B.2 together with descriptions of the properties used. All properties

selected for these tests are parametric w.r.t. system components (refer to section 1.2) to yield monitors

that (i) do not interact and can reach verdicts independently, and (ii) loop continually to exert the

maximum runtime overhead possible. Figure 6.6 depicts the two instrumented set-ups described. In

figure 6.6a, workers are weaved with the monitor code synthesised from the properties in appendix B.1;

figure 6.6b shows the instrumented Cowboy-Ranch protocol handlers with monitors corresponding

to properties from appendix B.2. During the course of benchmark runs, monitors communicate their

verdicts to a central coordinating process that tracks the expected number of verdicts to determine when

a run can be shut down without loss of messages.

6.5.2 Synthetic Benchmarks

Our first set of benchmarks use mild loads with 𝑛 = 20k and high loads 𝑛 = 500k; Pr(𝑠𝑒𝑛𝑑) = Pr(𝑟𝑒𝑐𝑣) is

fixed at 0.9 as in section 6.4.4. These configurations generate≈𝑛×𝑤×(work requests and responses)=4M

and 100M messages respectively to produce 8M and 200M analysable trace events per run. We use

a total loading time of 𝑡 = 100s in our experiments, and perform three experiment repetitions under

the Steady, Pulse, and Burst load profiles. Figure 6.5 depicts the number of workers instantiated by

the master at each benchmark run for the mentioned loads. The results are summarised in figures 6.7

and 6.8. Every chart in these figures plots the particular performance metric (e.g. memory consumption,

𝑦-axis) against the number of worker processes (𝑥-axis). Since inlining prevents us from delineating

the system and monitor-induced runtime overhead, we follow the standard practice in the literature

(e.g. [219, 113, 61, 52, 163, 184, 183]) and include baseline plots, i.e., the unmonitored system, to compare

the relative overhead between our different monitoring set-ups.

Mild loads Figure 6.7 illustrates the plots for the system set with𝑛=20k. These loads are similar to those

employed by the state-of-the-art frameworks used to evaluate component-based runtime monitoring,

e.g. [203, 219, 39, 87, 185], although ours are slightly higher. We remark that none of the benchmarks

used in these works consider different load profiles: they either model load on a Poisson process, or fail

to specify the kind of load applied. In figure 6.7, the execution duration chart (bottom right) shows that,

regardless of the load profile used, the running time of each experiment is comparable to the baseline.

Under this mild load, the execution duration alone fails to convey a detailed enough view of runtime

overhead, although our benchmarks provide broad coverage in terms of the Steady, Pulse, and Burst
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load profiles. This trend is mirrored in the scheduler utilisation plot (top left), where both baseline and

monitored systems induce a constant load of ≈ 17.5%. On this account, we deem these results to be

inconclusive. By contrast, our three load profiles induce different overhead for the response time (bottom

left), and, to a lesser extent, the memory consumption plots (top right). Specifically, when the system is

subjected to a Burst load, it exhibits a surge in the response time for the baseline and monitored system

alike at a load of ≈ 16k workers. While this is not reflected in the consumption of memory, the Burst

plots do exhibit a larger—albeit linear—rate of increase in memory when compared to their Steady and

Pulse counterparts. The latter two plots once again show analogous trends, indicating that both Steady

and Pulse loads exact similar memory requirements and exhibit comparable responsiveness under the

respectable load of 20k workers. Crucially, the data plots in figure 6.7 do not enable us to confidently

extrapolate our results. The edge case in the response time chart for Burst plots raises the question of

whether the surge in the trend observed at ≈ 16k remains consistent when the number of workers goes

beyond 20k. Similarly, although for a different reason, the execution duration plots do not allow us to

distinguish between the overhead induced by monitors for different loads at such a (small) scale. This

arises due to the perturbations introduced by the underlying OS (e.g. scheduling other processes, IO,

etc.) that affect the sensitive time-keeping of the benchmark metrics.

High loads We increase the load to 𝑛 = 500k workers to determine whether our benchmark set-up can

show how the monitored system performs under stress. The response time chart in figure 6.8 indicates

that for Burst loads (bottom left), the overhead induced by monitors grows linearly in the number of

workers. This conflicts with the results in figure 6.7, and supports our claim of section 1.1.3 that the

inability of benchmarks to scale makes it hard to extrapolate to general conclusions or identify potential

trends. For instance, the evidence in figure 6.7 can easily mislead one to deduce that the RV tool under

scrutiny scales poorly under Burst loads of mild and larger sizes. By subjecting the system to high loads,
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we also expose the dissimilarity between the response time (bottom left) and memory consumption (top

right) gradients for the Steady and Pulse plots that appeared to be comparable under the mild loads of

20k workers. Note that, considering the execution duration chart (bottom right of figure 6.8) as the sole

indicator of overhead falsely suggests that the monitored system exhibits virtually identical overhead,

regardless of the load profile applied. This erroneous observation is, however, refuted by the memory

consumption and response time plots that indicate otherwise, stressing the benefit that multiple metrics

offer when interpreting overhead.

We extend the argument for a multi-faceted view of runtime overhead to the scheduler utilisation

metric in figure 6.8 that reveals a subtle aspect of our concurrent set-up. Specifically, the charts show

that while the response time, memory consumption, and execution duration plots grow in the number of

worker processes, scheduler utilisation plateaus at ≈ 22.7%. This is partly caused by the master-worker

design that becomes susceptible to bottlenecks when the master is overloaded with requests [202]. In

addition, the preemptive scheduling of the EVM [57, 132] obliges the master to share the computational

resources of the same machine with the rest of the workers. We conjecture that, in a distributed set-up

where the master resides on a dedicated node, the overall system throughput may be further pushed.

6.5.3 OTS Application Benchmarks

In this second set of benchmarks, we evaluate the overheads induced by our inline monitoring tool under

examination using the Cowboy web server and show that the conclusions we draw are in line with

those reported earlier for our synthetic benchmark results. The experiment is configured to generate

load on Cowboy using the popular load testing tool JMeter [109] that issues HTTP requests. JMeter is

hosted on a dedicated node that accesses the local network where the experiment-taking machine of

section 6.4.1 running Cowboy resides. To emulate the typical behaviour of web clients (e.g. browsers)

that fetch resources via multiple HTTP requests, our Cowboy application serves files of various sizes
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that are randomly accessed by JMeter during the benchmark.

Mild loads Figure 6.9 plots our results for Steady loads from figure 6.7, together with the ones obtained

from the Cowboy benchmarks; JMeter did not enable us to reproduce the Pulse and Burst load profiles.

For the Cowboy benchmarks, we fixed the total number of JMeter request threads to 20k over the span of

100s, where each thread issued 100 HTTP requests. This configuration coincides with parameter settings

used in the experiments of figure 6.7. In figure 6.9, the scheduler utilisation, memory consumption, and

response time charts (top, bottom left) show conformity between the baseline plots of our synthetic

benchmarks and those taken with Cowboy and JMeter. This indicates that, for these metrics, our

synthetic system model exhibits analogous characteristics to the ones of the OTS system, under the

chosen load profile. The argument can be extended to the monitored versions of these systems which

follow identical trends. We point out the similarity in the response time gradients of our synthetic and

Cowboy benchmarks, even though the latter set of experiments was conducted over a local network.

This suggests that, for our single-machine configuration, the synthetic master-worker benchmarks

manage to adequately capture local network conditions. The 𝑦-axis interval separating the plots of the

two experiment set-ups stems from the implementation specifics of Cowboy and our synthetic model.

This discrepancy is also attributable to how the runtime metrics are collected, e.g. JMeter cannot sample

the scheduler utilisation from within the EVM and has to rely on measuring the CPU usage instead. The

deviation in the execution duration plots (bottom right) arises for the same reason.

High loads Our efforts to run tests with 500k request threads were stymied by the scalability issues

we experienced with Cowboy and JMeter on our experiment set-up of section 6.4.1.
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6.6 Discussion

RV for reactive systems necessitates benchmarking tools that can scale dynamically to accommodate

considerable load sizes and can provide a multi-faceted view of runtime overhead. This chapter presents

a benchmarking tool that fulfils these requirements. We demonstrate its implementability in Erlang,

arguing that the design is easily instantiatable to other actor frameworks such as Akka and Thespian. Our

set-up emulates various system models through configurable parameters and scales to reveal behaviour

that emerges only when software is pushed to its limit. The benchmark harness gathers different

performance metrics to give a comprehensive perspective on runtime overhead that, to wit, other

state-of-the-art tools do not currently offer. Our experiments demonstrate that these metrics benefit

the interpretation of empirical measurements: they increase visibility and help uncover insufficiently

general, or otherwise, erroneous conclusions. We establish that—despite its synthetic nature—our master-

worker model faithfully approximates the response times observed in realistic web server traffic. We also

compare the results of our synthetic benchmarks against those obtained using a OTS application use-case

to confirm that our tool captures the behaviour of this realistic set-up. It is worth noting that, while

the empirical measurements discussed in sections 6.4 and 6.5 depend on our chosen implementation

language, the conclusions we draw are transferable to other frameworks, such as Akka and Play [167]

that adopt a concurrency model similar to our own.

6.6.1 Related Work

There are other benchmarking tools targeting the JVM besides those mentioned in section 1.1.3. Re-

naissance [193] employs workloads that leverage the concurrency primitives of the JVM, focussing on

the performance of compiler optimisations, similar to DaCapo and ScalaBench. These benchmarks

gather metrics that measure software quality and complexity, as opposed to metrics that gauge runtime

overhead. Basho Bench [28] is one of the first benchmarking tools available for the Erlang/OTP that was

originally implemented to benchmark Riak [29] and has been extended for use with other applications.

The tool focusses on capturing throughput and latency metrics. It creates workers to which operations

specific to a benchmarking scenario are assigned, e.g. issuing HTTP requests. Worker processes can then

invoke these operations either by maximising the throughput or at intervals following a Poisson process.

Bench also accepts parameters that configure the number of concurrent workers, total benchmark

loading time, and randomisation seed, so that tests can be executed in a repeatable fashion. Despite the

similarities to our tool in these respects, Bench is similar to other load generation tools like JMeter [109],

Tsung [186], and Gatling [74] that assess the performance of APIs (e.g. web services, middleware).

By contrast, bencherl [20] assess the scalability of Erlang applications, rather than their performance.

This framework combines a suite of synthetic microbenchmarks that measure the Erlang-specific

execution behaviour (e.g. process spawning, message sending, etc.), together with a collection of OTS

programs to identify bottlenecks in the EVM. The CRV suite [26] is an initial attempt at standardising

the evaluation of RV tools but mainly focusses on RV for monolithic programs written for the JVM. We

are unaware of RV-centric benchmarks for reactive systems, such as ours, that are specifically designed

to scale dynamically and accommodate high loads that follow realistic patterns.

In Liu et al. [168], the authors propose a queueing model to analyse web server traffic deployed on

Apache [161], and develop a distributed benchmarking tool to validate it. Their model coincides with
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our master-worker set-up and considers loads based on a Poisson process; we also assess other forms

of load. A study of message-passing communication on parallel computers is conducted in Grove and

Coddington [126]. The authors employ a MPI-based benchmarking tool that measures the probability

distributions of communication times between systems loaded with different numbers of processes.

This is similar to our approach of sections 6.4.4 and 6.4.5 for synthetic loads. They exclusively focus on

MPI, which makes their tool inapplicable to our use case. However, the experiments of section 6.4 that

validate our benchmarking tool, and in particular, establish the veracity of the models it generates (cf.

section 6.4.5), agree with the empirical findings reported by Liu et al. [168] and Grove and Coddington

[126].



7 Evaluating Decentralised Outline

Runtime Monitoring

Chapter 1 claims that a decentralised approach to monitoring reactive component systems overcomes

the challenges that render its centralised counterpart inadequate. It argues that the runtime monitoring

technique itself must be reactive, lest it undermines the reactiveness of the SuS. This chapter evaluates

the Erlang implementation of our decentralised algorithm given in chapter 5 via a systematic empirical

study, demonstrating that it exhibits the characteristics of a reactive system. In particular, it

• effects timely detections with feasible impact on the SuS (responsive, sections 7.2.1, 7.2.2 and 7.2.4),

• maximises resource usage but does not crash (resilient, sections 7.2.2 to 7.2.4),

• grows and shrinks to accommodate dynamic changes in load (elastic, sections 7.2.2 and 7.2.5), and

• reconfigures monitors in reaction to SuS trace events (message-driven, sections 7.2.2 and 7.2.5).

We evaluate decentralised and centralised outline monitoring alongside inlining (refer to section 4.5) since

it is widely adopted and generally regarded as the most efficient online monitoring technique [91, 90, 25].

This gives us a sound basis against which our results can be compared and generalised. As a by-product

of this evaluation, we derive other observations that challenge certain commonly-accepted notions that

are not satisfactorily explored in the RV literature cited in section 7.4 (e.g. we show that a considerable

portion of the runtime monitoring overhead stems from the instrumentation, and that outline monitoring

induces overhead comparable to inline monitoring in certain cases).

7.1 Reactive System Monitoring

Our goal is to study decentralised and centralised monitoring under induced edge-case (e.g. limited

memory) and general-case (e.g. typical number of processing elements) scenarios. We judge whether

these monitoring approaches scale and optimise the use of available computational resources to determine

whether they exhibit reactive behaviour. For this reason, our experiments use two different set-ups:

SUE edge-case scenarios, which reuse the set-up of section 6.4.1 to capture systems with constrained

hardware resources, and

SUG general-case scenarios, which use an Intel Core i9 9880H 64-bit machine with 16GB of memory,

running macOS 12.3.1 and Erlang/OTP 25.0.3, replicating platforms with modern commodity

hardware.

The differences in hardware, OS, and Erlang/OTP versions increase our confidence that the conclusions

drawn from this chapter are portable to other settings. To broaden the scope of this investigation and

generalise our results, we also consider two archetypal models of reactive systems that:

82
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Set-up System Schedulers Workers 𝑛 Work requests 𝑤 ≈Messages ≈Messages/s

SUE
RSH

4
100 k 100 20 M 196 k

RSL 1 k 10 k 20 M 201 k

SUG
RSH

16
500 k 100 100 M 345 k

RSL 5 k 10 k 100 M 637 k

Table 7.1. Experiment configurations and message throughput at maximum Steady loads

RSH exhibit high degrees of concurrency and perform short-lived tasks. Web server applications instan-

tiate this model, where the server receives numerous HTTP requests from clients and fulfils them

by fetching resources or executing commands (e.g. Nginx [79]), or

RSL deal with lower concurrency levels and engage in long-running, computationally-intensive tasks.

Big data stream processing frameworks are one example (e.g. Apache Spark [228]).

We model these scenarios on set-ups SUE and SUG using the benchmarking tool of chapter 6 to show

that our decentralised monitoring approach can be feasibly applied to all cases.

7.1.1 Experiment Set-Up

Our EVMs on set-ups SUE and SUG are configured to use 4 and 16 scheduler threads respectively. The

setting for each platform is selected to coincide with the number of logical processors available on

the SMP machine [19]. The loads we use to generate our benchmarking models reflect the hardware

capacity that SUE and SUG afford. For the experiments in sections 7.2.1 to 7.2.3, set-up SUE is configured

for moderate loads with 𝑛 = 100k workers and 𝑤 = 100 work requests per worker. This model generates

≈ 𝑛 ×𝑤 × (work requests and responses) = 20M message exchanges between the master and worker

processes, totalling 20M× (send and receive trace events) = 40M analysable trace events. Set-up SUG

adopts the same high load settings of section 6.4.1, i.e., 𝑛=500k workers, each with𝑤 = 100 work requests

to produce 100M messages and 200M trace events. These load configurations embody the first model of

reactive systems, RSH, with high concurrency, and are used in sections 7.2.4 and 7.2.5.

Section 7.3 uses loads that model the second reactive system, RSL. The benchmarks on set-up SUE are

configured with 𝑛 = 1k and 𝑤 = 10k work requests per worker, and SUG sets 𝑛 = 5k and 𝑤 = 10k. These

parameter values roughly yield the same number of trace events as their respective counterparts with

moderate (i.e., 𝑛 = 100k, 𝑤 = 100) and high (i.e., 𝑛 = 500k, 𝑤 = 100) loads on system RSH.

In all our experiments, a total loading time of 𝑡 = 100s is set. The parameters Pr(𝑠𝑒𝑛𝑑) and Pr(𝑟𝑒𝑐𝑣)that

control the speed at which the system reacts to load, use the values Pr(𝑠𝑒𝑛𝑑) =Pr(𝑟𝑒𝑐𝑣) = 0.9. These

generate benchmark models that consume reasonably low memory and emulate realistic response times

(refer to section 6.1.5). We subject each benchmark to the three load profiles—Steady, Pulse, and Burst—

offered by our benchmarking tool of chapter 6. Each experiment is performed three times, based on our

CV values calculated according to section 6.4.3. Table 7.1 summarises these experiment configurations

and includes the message throughput under maximum Steady loads (i.e., 100 k, 500 k, etc.) for reference.
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(b) Centralised master and worker process monitoring

Figure 7.1. Master-worker benchmarks instrumented with decentralised and centralised outline monitors (internal)

7.1.2 Runtime Monitoring Set-up

By contrast to the set-up of section 6.5.1, the experiments in this chapter monitor both the master and

worker processes. Figure 7.1 illustrates the arrangement of decentralised and centralised outline monitors

for the case where events are analysed internally by tracers (cf. figure 5.1b). The system with inline

monitors is organised similarly to the one in figure 6.6a. It is worth mentioning that the centralised

set-up (figure 7.1b) is obtained by instrumenting the master process only. By virtue of automatic tracer

inheritance (assumption A5), every worker that the master creates gets traced by the monitor at the

master, giving rise to the set-up of figure 7.1b. See concluding discussion of section 5.1 on page 50.

7.1.3 Precautions

Our benchmarking tool of chapter 6 focusses on collecting the memory consumption and scheduler

utilisation metrics globally to minimise impacting the behaviour of the master-worker models it gener-

ates [127]. This measurement-taking strategy prevents us from isolating the operating expense of the

monitors from that of the SuS. We, therefore, follow the same approach of section 6.5 and insert the

baseline system plots for reference in the charts that follow.

Online monitors may introduce runtime overhead biases owed to various specific factors, such as the

non-determinism a monitor admits, its size in terms of the number of states, monitor optimisations,

persisting trace events, etc. As an example, table 7.2 lists the mean time in microseconds (µs) that

monitors spend processing events for traces of different lengths. The values in the topmost entry record

the time it takes to write an event to file (e.g., for offline monitoring), while the remaining tabulate

the average time spent by the monitors synthesised from the properties of appendices B.1 and B.3 to

Event operation Number of events in trace

1 k 10 k 100 k 1 M

Write to file 30.76 33.18 29.59 27.84

Analysis using monitors from formulae 𝜑13 to 𝜑16 302.55 304.44 308.99 306.71

Analysis using monitors from formulae 𝜑rp to 𝜑cp 693.46 667.97 715.95 654.96

Table 7.2. Mean time (µs) taken by monitors to persist or analyse one trace event
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analyse each event. To objectively compare the overhead induced in different monitoring set-ups, our

benchmarks simulate this runtime analysis cost via a configurable delay. We set this analysis cost to a

very conservative ≈ 5µs per event to manufacture a best-case scenario under which decentralised and,

in particular, centralised monitoring can be evaluated. Runtime checking local properties (i.e., ones

specified w.r.t. system components) against a global trace can be done efficiently via an approach called

parametric trace slicing (PTS) [62, 196], mentioned in section 4.7.1. Recall that PTS partitions the global

trace into multiple sub-traces, where each corresponds to the behaviour observed locally at different

components. Every sub-trace is then analysed independently of the others by a dedicated local monitor

that reaches its verdict based on the events reported thus far. Our centralised monitor implements PTS by

demultiplexing the global stream of trace events to different local monitors. It maintains a monitor map

that is indexed by the PID of system components to quickly access the associated monitors and analyse

events. The central monitor ensures that every local monitor is created when needed and removed when

its analysis is completed. This ensures the lowest possible overhead and does not bias our results in

favour of decentralised monitoring.

7.2 Monitoring High Concurrency Systems

This section gives a comprehensive view of runtime monitoring that highlights,

(i) the effect overhead has on the SuS as it executes, and

(ii) the average resources monitors consume until their analysis runs to completion

Aspect (i) elucidates how the memory consumption and scheduler utilisation influence the response time

that a client might experience in practice (sections 7.2.1 to 7.2.4). Conversely, aspect (ii) reveals whether

the monitoring set-up optimally maximises the memory and scheduler capacity provided by the hosting

Experiment Set-up Claim and expected outcome

(i) Effect that overhead has on the SuS as it executes

Instrumentation Overhead SUE
Instrumentation induces non-negligible overhead

We expect the centralised set-up to induce the highest overhead

Monitoring Overhead SUE
Instrumentation and runtime analysis add further overhead

We expect the centralised set-up to induce the highest overhead

Instrumentation Cost SUE

Much of the monitoring overhead arises from instrumentation

We expect the overhead gap between the instrumented and

monitored set-ups for decentralised monitors to be relatively

small

Scaled Set-up SUG
Decentralised monitoring leverages the added resource capacity

We expect the centralised set-up not to scale

(ii) Average resources monitors consume until analysis runs to completion

Resource Usage SUG
Decentralised monitoring is elastic following the load model

We expect the centralised set-up to be unaffected by load model

Table 7.3. Experiments for high concurrency systems (RSH) investigating overhead, claims, and expected outcomes
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platform and whether monitors can effect timely verdict detections (section 7.2.5). The experiments

in this section use set-up SUE to capture edge-case scenarios with limited resources, and set-up SUG,

capturing general-case scenarios with modern hardware. Both set-ups focus on RSH, which models

high-concurrency systems that execute short-lived tasks.

Our general aims for aspects (i) and (ii) are broken down in table 7.3. It lists claims that we make about

experiments, together with the outcomes expected as a result of our interpretation of the corresponding

empirical evaluation. Each section named in table 7.3 details the methodology followed in each evaluation

and is accompanied by a discussion of the graphed results. We adopt this nomenclature in what follows.

The term instrumentation is used to mean the ‘isolated instrumentation’, i.e., without the analysis of

runtime monitors, and monitoring to mean the ‘instrumentation and the runtime analysis of monitors’.

Decentralised monitoring refers to both the inline and outline forms of monitoring.

7.2.1 Instrumentation Overhead

Our first set of experiments isolates the overhead induced on the SuS due to instrumentation, i.e., the

cost of tracing system components and reporting events to the intended monitors. They show that the
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Figure 7.2. Instrumentation overhead on system under moderate load benchmarks (100k workers)
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instrumentation induces non-negligible overhead, despite the fact that no runtime analysis is conducted

by monitors (table 7.3, claim 1). The benchmarks are executed on set-up SUE, where the master-worker

models are run with moderate loads (𝑛 = 100k, 𝑤 = 100, and 4 scheduler threads). Figure 7.2 shows

the results obtained from these benchmarks for the decentralised inline (inline), decentralised outline

(decentralised), and centralised outline (centralised) forms of instrumentation.

For the three load profiles, Steady, Pulse, and Burst, figure 7.2 indicates that (i) all types of instrumen-

tation induce overhead that is by no means insignificant, and (ii) that centralised instrumentation carries

the larger penalty. Centralised instrumentation occupies more memory due to the backlog that gradually

accumulates in the mailbox of the tracer process (i.e., the message buffer ^ described in section 5.1.1

on page 50). This build-up is a manifestation of two aspects. Worker processes concurrently deposit

trace events into the mailbox of the central tracer. At the same time, the tracer does not manage to

consume the events in its mailbox at the same rate at which these are being produced by workers as a

result of its sequential nature. Evidence of this bottleneck can be gleaned from the scheduler plots which

demonstrate high utilisation levels that settle at ≈ 36% for the benchmarks with ≈ 40k workers under

Steady load, and ≈ 60k workers under Pulse and Burst load. Considering the scheduler utilisation charts

in isolation may suggest that, rather than a bottleneck, centralised instrumentation has the potential to

scale since it displays low usage. Its steadily growing memory consumption plots in figure 7.2, however,

contradict this hypothesis.

By contrast, our decentralised approach uses considerably fewer resources and yields lower response

times throughout the three load profiles of figure 7.2. Readers may notice that the decentralised in-

strumentation scheduler utilisation plots also plateau slightly in the Steady (≈ 60k workers) and Pulse

(≈ 70k workers) load charts. This behaviour is induced by the bottleneck intrinsic to the master-worker

paradigm [202] that throttles the production of trace events, rather than by the inability of our decen-

tralised approach to scale. One easily supports this assertion by looking at corresponding memory

consumption plots that exhibit a gentle rise in the number of worker processes.

7.2.2 Monitoring Overhead

The second set of experiments extends the results of section 7.2.1 by combining the overhead incurred

by the analysis performed by the monitors and instrumentation, i.e., the full cost of runtime monitoring.

We demonstrate that the added cost of runtime analysis induces further growth in the overhead and that

centralised monitoring performs poorly as a result (table 7.3, claim 2). Our benchmarks are executed

on configuration SUE and introduce the ≈ 5µs delay described in section 7.1.3 to stabilise the analysis

overhead. Figure 7.3 illustrates the overhead incurred by the monitored master-worker system under the

Steady, Pulse, and Burst load models. In addition to the baseline and inline benchmarks, our charts plot

the overhead for two variants of decentralised and centralised monitoring (see figure 5.1) that internalise

the event analysis within tracers (internal), or delegate it to dedicated monitor processes (external).

These are included to examine whether the benefit of process isolation obtained by separating the tracer

and monitor logic justifies the extra overhead induced due to additional concurrency.

Figure 7.3 shows that centralised monitoring exhibits analogous memory consumption and scheduler

utilisation patterns to the instrumentation overhead charts of figure 7.2. It reveals that simulating a

best-case analysis slowdown of ≈ 5µs per event aggravates the overhead to the point of crashing (this is

marked by ✕ in figure 7.3). This behaviour is consistent across Steady, Pulse, and Burst loads for both the
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Figure 7.3. Monitoring overhead on system under moderate load benchmarks (100k workers)

internal and external forms of centralised monitoring. By analysing the crash dumps produced by these

benchmarks, we were able to attribute these abrupt terminations to memory exhaustion. The dumps

also confirm that the significant amount of memory consumed is due to the central monitor process,

which appears to result from the accumulated backlog of trace messages that ultimately leads the EVM

to fail. This suggests that centralised monitoring is neither scalable nor resilient.

Decentralised inline and outline monitoring is not afflicted by the analysis slowdown, but rather scales

to accommodate this cost. This may be confirmed by cross-referencing the low memory consumption

and scheduler utilisation plots of figures 7.2 and 7.3 (refer also to summary in figure C.1). Dissecting

these metrics uncovers two important subtleties of decentralisation. First, outline monitors process

events quickly (attested by the absence of excessive memory growth) and spend much of their time idle,

waiting for trace events (lower scheduler utilisation than centralised monitoring), i.e., they are passive

and message-driven. Second, the effectiveness of inline monitors should not be judged solely by the low

memory and scheduler costs. Inlining entwines the SuS and monitors, and slowdowns in the analysis

risk impacting the overall system responsiveness [25, 68].

Figure 7.3 (top) shows that both forms of decentralised monitoring induce latency, yet for crucially
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different reasons. Our algorithm presented in chapter 5 enables us to deduce that the latency in the case

of outline monitoring stems indirectly from the dynamic reconfiguration monitors perform to manage

the choreography. In contrast, the effects of inlining are due to the dependency it has on the analysis

slowdown. This reasoning follows from the fact that the SuS and monitors execute in lock-step according

to the synchronous instrumentation definition of figure 3.2 and our corresponding implementation of

section 4.5. We note that other works (e.g. [61, 51]) report similar observations. Section 7.3 elaborates

further on the slowdowns induced by inlining and shows that increasing the event analysis throughput

can deteriorate the response time further.

The latency introduced by decentralised monitoring is decidedly lower than its centralised equivalent

(figure 7.3), making decentralisation the better option due to the scalability and resiliency it offers.

Figure 7.3 also indicates that our outline approach induces feasible response time overhead when judged

against inline monitoring. Moreover, in cases that do not warrant strict timely detections, outlining is

preferable to inlining as it does not increase the sequentiality (called ‘sequentialness’ in Armstrong [19])

of the SuS, leaving it more amenable to parallelisation.

Effects of less sequentiality are visible in the plots of figure 7.3—despite the limited parallelism offered

by our current configuration, set-up SUE, with four scheduler threads. Here, the variants of decentralised

and centralised outline monitoring that tease apart the instrumentation and trace event analysis (see

figure 5.1a) put the scheduler to more use, as opposed to the internalised versions. The decentralised

form of externalised monitoring consumes more memory due to the extra monitor processes it creates to

delegate the analysis task. By contrast, both variants of the centralised approach consume comparable

(Steady and Pulse load) or slightly less (Burst load) amounts of memory since the backlog of trace events

occurs only on the instrumentation side. This asynchronously forwards events to its corresponding

singleton monitor process and helps to relieve some of the pressure build-up on the tracer process.

As a result, these two processes handle trace events concurrently and seems to be the reason why the

externalised analysis variant of centralised monitoring consistently crashes at higher loads in figure 7.3.

Our deduction is supported by the crash dumps resulting from these benchmarks.

7.2.3 Instrumentation Cost

Figure 7.4 compares the instrumentation and monitoring overhead of figure 7.2 and figure 7.3 for the

two load profile extremities, Steady and Pulse. Readers are pointed to figure C.1 for the plots that

include Pulse load. We show that in our experiments, much of the runtime overhead is induced by the

instrumentation, rather than by the analysis that monitors conduct (table 7.3, claim 3). In figure 7.4, the

centralised approach demonstrates a considerable disparity between the instrumentation (i.e., without

runtime analysis) and monitoring (i.e., instrumentation and runtime analysis) overhead for both memory

consumption and scheduler utilisation as the load in the number of worker processes increases. This

trend is consistent across all load profiles. Evidence of the centralised monitoring bottlenecks are clear

in the memory and scheduler values (memory increases but the scheduler plateaus). These values start

to grow beyond ≈ 30k and ≈ 20k workers for the Steady and Burst loads respectively. The resulting

overhead increase leads our experiments to crash (denoted by a missing bar plot in figure 7.4) at the ≈70k

workers mark under Steady load and at ≈80k under Burst load. Both plots in the figure also demonstrate

a degradation in the response time for centralised instrumentation as the load in the number of workers

increases, which seems to be a byproduct of the consistently-high demands on the scheduler.
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Figure 7.4. Gap in instrumentation and monitoring overhead on the system under moderate load benchmarks (100k

workers)

Decentralised inline and outline instrumentation exhibit comparable overhead measurements to the

ones taken with monitors. However, the respective bar plots for inline instrumentation and inline

monitoring show a growing pairwise gap in the response time values under Burst load that starts

developing at ≈ 80k workers (figure 7.4, top right). Such divergence in the response time readings is

arguably smaller in decentralised outline instrumentation and decentralised outline monitoring. Based

on this observation and the fact that outline instrumentation decouples the SuS from its monitors, we

conjecture that outlining is robust and absorbs the additional analysis slowdown. This would enable it

to accommodate intricate monitors that runtime check richer correctness properties.

7.2.4 Scaled Set-up

Our benchmarks conducted on SUE study how decentralised and centralised monitoring behave in

edge-case situations where the memory is constrained and the possibility of parallelism is limited. Under

these conditions, our findings show that the centralised approach is neither scalable (it utilises the

scheduler reasonably, but at the same time, keeps considerable amounts of memory occupied), nor
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resilient (it exhausts the memory until eventually crashing due to its single point of failure). Decentralised

monitoring is not subject to these shortcomings. We transition to the second set-up, SUG, and scale

our experiments to confirm that the aforestated observations are transferable to more general cases. In

particular, we show that decentralisation yields scalable runtime monitoring that (i) capitalises on the

additional memory and processing capacity, and (ii) copes well with high load sizes (table 7.3, claim 4).

Figure 7.5 shows our benchmark results set with 𝑛 = 500k workers, 𝑤 = 100 work requests per worker,

and a simulated analysis slowdown of ≈ 5µs per trace event. The number of scheduler threads on the

EVM is increased from 4 to 16. Interested readers can consult figure C.3 which charts the instrumentation

and monitoring overhead. Our memory consumption and scheduler utilisation plots of figure 7.5 magnify

the bottleneck that adversely affected centralised monitoring in figure 7.3. In the latter benchmarks with

100 k workers, centralised monitoring exhibits higher scheduler utilisation levels (e.g. 31.87 % for the

internalised analysis variant at 50 k workers under Steady load), by comparison to the plots in figure 7.5

(e.g. 4.67 % at an equivalent number of workers and under the same Steady load). The drop in scheduler

utilisation stems from two reasons. First, the centralised monitor is limited in its use of computational

resources due to its sequentiality (see section 7.2.2). Second, the mean utilisation value is calculated over
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Figure 7.5. Monitoring overhead on system under high load benchmarks (500k workers)
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16 scheduler threads. On set-up SUE, this value grows because the EVM schedules processes on a limited

number of threads, which concentrates their use; in contrast, processes are spread across more schedulers

on set-up SUG. While the larger number of schedulers on the latter set-up does improve the parallelism in

our experiments, this processing capability is not exploited to its fullest due to the throttling of tasks the

master-worker model is susceptible to. Comparing the scheduler utilisation baseline in figures 7.3 and 7.5

corroborates this hypothesis. Nevertheless, the added parallelism gained through the extra schedulers

on SUG instigates the workers to collectively generate more trace events than in the previous set-up

with 100k workers (e.g. the throughput with 100k workers is ≈ 196k messages/s, vs. ≈ 345k messages/s
in the experiments with 500k workers, table 7.1). The higher message throughput exacerbates the

load on the central monitor that is unable to exploit the parallelism offered by set-up SUG to analyse

events. We emphasise that the absence of crashes in these experiments is attributable to the considerable

amount of memory set-up SUG provides, rather than to the ability of the central monitor to manage load.

Figure 7.5 demonstrates that the sustained increase in memory consumption by centralised monitors

will eventually lead to failure, once the available resources are exhausted.

Decentralised outline monitors benefit from the hardware capacity of set-up SUG, which manifests as

conservative memory consumption and increased scheduler utilisation, supporting our observations

in section 7.2.2. The growth in scheduler utilisation follows as a result of the monitor reconfiguration

and the routing of trace events effected by our algorithm of chapter 5. As is the case in figure 7.3, the

external variant of decentralised outline monitoring (that uses dedicated processes to analyse events)

induces slightly higher memory overhead than its internal analogue as a result of the extra processes it

creates. Figure 7.5 shows that centralised outline monitoring is also outperformed by inlining, which

carries the lowest cost out of the three monitoring approaches considered.

The plots of figure 7.5 exhibit a positive correlation between the scheduler utilisation and the latency

induced by decentralised and centralised outline monitoring (i.e., the more the scheduler utilisation

increases, the higher the latency). This relationship, equally visible in figure 7.3, is a consequence of

our master-worker benchmarks that focus on CPU-intensive tasks (refer to section 6.1.5 on page 69).

We assert that the response time of our benchmarks in figure 7.5 degrades since decentralised outline

monitors compete for the same pool of scheduler threads in use by worker processes. As a result,

workers reside in the run queue [132] for longer periods, which impacts their ability to respond to the

master promptly. The singleton monitor employed in the centralised approach adds minimal demands

on the EVM schedulers and uses its allotted time slice to keep up with its backlog of trace events. In

fact, figure 7.5 shows that organising the instrumentation and runtime analysis into separate processes

improves the scheduler utilisation of centralised monitoring: this materialises as the small decrease

in the memory consumption (middle) and an imperceptible drop in latency (top) across the three load

profiles.

Decentralised outline monitoring affects the response time of the SuS, but this comes at the cost of

replicating monitors to achieve resilient set-ups that address the SPOF and scalability limitations which

make centralised monitoring inept. Besides, decentralised outline monitoring circumvents the issues

where inlining cannot be applied (see discussion in section 2.1.4). Figure 7.5 demonstrates that our

decentralised approach to monitoring leverages the added hardware capacity and copes with high loads

(memory consumption is very gradual). It also induces feasible latency that is adequate in many practical

applications such as soft real-time or on-line systems [57], where the response time requirement is often
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Figure 7.6. Monitoring overhead for complete experiment runs under high load benchmarks (500k workers)

in the order of seconds [149].

7.2.5 Resource Usage

Sections 7.2.1 to 7.2.4 demonstrate the effects of monitoring overhead on the SuS. Through the mean

response time, figures 7.3 and 7.5 capture the overall system responsiveness from the point of view of

interacting clients, such as end-users or other applications. The memory consumption and scheduler

utilisation plots presented in these figures are confined to the time period in which the system runs,

thereby giving a truthful depiction of these metrics. This section reinterprets the same metrics collected

for the experiments of sections 7.2.2 and 7.2.4. It presents an alternative view that assesses monitoring

overhead in its entirety—from the time the SuS starts executing until monitors complete their analysis—to

investigate whether each monitoring technique puts to optimal use the resources offered by its hosting

platform. Through this view, we show that decentralised inline and outline monitoring dynamically

adapt to the load applied, i.e., they are elastic, and that centralised monitoring exhibits no such quality

(table 7.3, claim 5). The system response time is not relevant to this discussion (it is an attribute of the

SuS, not of the monitors), and we replace it by the execution duration metric that records the time taken



7 Evaluating Decentralised Outline Runtime Monitoring · 94

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

C
on

su
m

pt
io

n
(G

B)

Steady Load

Memory

Burst Load

Memory

0 500 1000 1500 2000 2500

Execution duration (s)

0

10

20

30

40

50

60

70

U
til

is
at

io
n

(%
)

Scheduler

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler

baseline inline decent. (internal) decent. (external) cent. (internal) cent. (external)

Figure 7.7. Resource usage for (de)centralised monitoring under high load benchmarks (500k workers)

by experiments to execute to completion. We only consider the results taken on set-up SUG with 500k

workers processes, since the experiments on SUE for centralised monitoring discussed earlier crashed

(see section 7.2.2).

The mean metrics calculated over complete experiment runs, depicted in figure 7.6, reaffirm the

memory consumption trend for centralised monitoring observed in figure 7.5. One striking difference

between these two figures is in the scheduler utilisation, where the plots for the two variants of

centralised monitoring (i.e., internal and external) in figure 7.6 dip below the baseline system. This

effect results from skewness in the mean due to the asymmetry in the distribution of the scheduler

utilisation samples collected by our benchmarking tool (refer to section 6.3). Figure 7.7 plots the sampled

memory consumption and scheduler utilisation (averaged over the 16 schedulers, 𝑦-axis) against the

execution duration (𝑥-axis) to capture the resource usage during the course of a single experiment run.

It underscores the aforementioned lopsidedness in the sampled scheduler utilisation values. This arises

because the samples register higher values when the master-worker system and centralised monitor

execute concurrently, and lower values once the system terminates but the centralised monitor lingers,

processing its backlog of events. The protracted processing of trace events—reflected in figure 7.7 by

the ‘tail’ in the scheduler utilisation plots—also suggests that centralised monitors are susceptible to

flagging late monitoring verdicts, making them unsuited for cases when timely detections are required.

For instance, our benchmark runs for 500 k with centralised monitors (internal) respectively take ≈862%

and ≈ 843% longer to finish executing than the baseline system under Steady and Burst loads.

Figure 7.6 shows that decentralised outline and inline monitoring take considerably less time to

complete their runtime analysis. As an example, our same set-up with decentralised outline monitors

(internal) prolongs the execution of experiments by ≈ 73% and ≈ 85% w.r.t. the baseline system under
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Figure 7.8. Resource consumption for decentralised monitoring under high load benchmarks (500k workers)

Steady and Burst loads respectively, and ≈ 1% and ≈ 31% for inlined monitors. The memory consumption

plots in figure 7.6 (and also figures 7.3 and 7.5) demonstrate the potential of decentralised approaches to

scale as the SuS is subjected to increasing load. These figures give the mean memory consumption over

the duration of the benchmark executions, which conceals how our decentralised algorithm uses this

resource optimally at runtime.

Figure 7.8 replots the decentralised monitoring runs in figure 7.7 to highlight this perspective. The

memory consumption patterns in figure 7.8 mirror the profiles of the loads applied (see figure 6.5 for

examples), confirming that our decentralised approach grows and shrinks in response to dynamic

fluctuations in the load (cf. figure C.5 for Steady vs. Pulse load). This elasticity results from instrumenting

monitors when needed and garbage collecting them when these become redundant to minimise the

memory footprint (see section 5.2.7). Centralised monitoring does not exhibit this adaptable behaviour

and its use of memory grows steadily, regardless of the load profile applied (figure 7.7 accentuates

the substantial difference in memory consumption between decentralised and centralised monitors).

Similarly, its scheduler utilisation is largely insensitive to the load profile applied. This occurs despite

load profiles dictating different worker creation schemes, which, however, have no effect since the

trace events exhibited by workers are always funnelled through a single monitor. In the decentralised

approach, the creation and termination of monitors follows that of worker processes. This influences

the scheduler utilisation, as figure 7.8 indicates, albeit on a small scale. For the case of Steady load, the

utilisation oscillates consistently due to the continual influx of trace events, whereas under Burst load,

utilisation is less concentrated and increases slightly towards the end.

Closely inspecting the frequency and amplitude of the scheduler utilisation plots in figures 7.7 and 7.8

corroborates the observation made in section 7.2.2 about decentralised monitoring, namely that, monitors
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process events quickly and revert to waiting. The prompt handling of trace events by decentralised

monitors appears to manifest as peaks in figure 7.8, whereas waiting periods (where monitors are placed

on the EVM run queues) are reflected in the regions that show stable scheduler utilisation. Peaks with

high amplitude suggest the simultaneous use of multiple scheduler threads. The absence of such peaks

in the plots of figure 7.7 for centralised monitoring comes from the single-process monitor that is unable

to leverage other unoccupied EVM scheduler threads. This is especially evident in the sub ≈ 3.08%

scheduler utilisation under both Steady and Burst loads. Figure C.6 depicts the load on the individual 16

EVM schedulers to certify this deduction. It indicates evenly-distributed utilisation across schedulers

S1 to S16 for decentralised monitoring (top) under Steady and Burst loads throughout the benchmark

run. This makes it consistent with the peaks in the mean scheduler utilisation plot of figure 7.8. By

contrast, the load distribution for centralised monitoring in figure C.6 (bottom) becomes concentrated

on scheduler S1 and S2 once the master-worker system stops executing.

7.3 Monitoring Lower Concurrency Systems

Section 7.2 attests that our decentralised monitoring approach is reactive. At the same time, it preserves

the reactive aspect of the SuS by inducing feasible runtime overhead. Centralised monitoring lacks

both of these traits. This section considers the second type of reactive architecture, RSL, which models

systems with comparably lower concurrency that focus on long-running computational tasks. We

demonstrate that a centralised approach fails to scale in such settings. We also show that decentralised

outline monitoring scales even better than on system RSH, and induces overheads on par with its inline

counterpart.

In these experiments, our master-worker models use moderate loads of 𝑛 = 1k workers with 𝑤 =

10k work requests per worker on set-up SUE (edge-case scenarios), and high loads with 𝑛 = 5k and

𝑤 = 10k on SUG (general-case scenarios). As before, we set the EVM with 4 scheduler threads on

set-up SUE and 16 threads on SUG, keeping the simulated slowdown of ≈ 5µs per trace event. The

changes in the benchmark configuration alter the way the execution of our master-worker models

unfolds w.r.t. the ones in section 7.2. Concretely, the master instantiates most of its worker processes

relatively early in runs and spends the remainder of its execution busy, allocating work requests. This

increases the message throughput within the system, e.g. table 7.1 shows almost a two-fold growth in

throughput for the experiments performed with 5 k workers by comparison to the ones with 500 k in

section 7.2. Consequently, our attempts at benchmarking centralised monitors on set-ups SUE and SUG

were consistently hampered by the rapid accumulation of trace events in the backlog of the central

monitor that, eventually, exhausts the available memory. For this reason, we only consider the inline

and outline (internal variant, figure 5.1b) forms of decentralised monitors in what follows.

Figure 7.9 draws the comparison between our experiments of section 7.2 taken with 500 k workers and

the ones taken on set-up SUG with 5 k workers under Steady and Burst loads. Since the two experiment

set-ups are incomparable in their number of processes, figure 7.9 plots the performance metric (e.g.

memory consumption, 𝑦-axis) against the benchmark iteration number (𝑥-axis). We recall that each

500 k and 5 k benchmark run generates approximately the same number of message exchanges between

the master and worker processes, enabling us to compare the two (cf. table 7.1).

The bar plots in figure 7.9 show that decentralised outline monitoring (outline) in system RSL with 5 k
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Figure 7.9. Gap in decentralised monitoring overhead on the system under high load benchmarks (500k vs. 5k workers)

workers induces less memory and scheduler overhead, compared to the experiments of system RSH with

500 k workers. This occurs despite the fact that both of these configurations generate an approximately

equal amount of load in terms of analysable trace event messages (see table 7.1). Table 7.4 estimates

these overheads w.r.t. the baseline systems RSH and RSL for the maximum loads at 500 k and 5 k workers

respectively. For instance, outline monitors increase the memory overhead by 8 % in our experiments on

system RSL vs. 23 % on RSH under Steady load, and by 10 % vs. 56 % on RSL and RSH respectively under

Burst load. The corresponding scheduler plots exhibit analogous trends, with 52 % overhead increase

(system RSL) vs. 123 % (system RSH) under Steady load, and 50 % (system RSL) vs. 123 % (system RSH)

under Burst loads. We conclude that this decrease in overhead for outlining on system RSL stems from

the lower number of worker processes the master creates, that (i) requires our decentralised algorithm

to perform fewer reconfigurations to manage the monitor choreography, and (ii) minimises the trace

event routing performed as a result (refer to section 5.2.3). By contrast to outlining, decentralised inline

monitoring (inline) registers negligible changes in both memory consumption and scheduler utilisation

between our experiment set-ups RSL and RSH. While outline monitoring does not lower the relative

response time w.r.t. the baseline set-up on RSH, it does induce less latency than inline monitoring on
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System Load Response time % Memory consumption % Scheduler utilisation %

Inline Outline Inline Outline Inline Outline

RSH

Steady 4 95 1 23 0 123

Pulse 50 134 11 41 0 126

Burst 55 97 16 56 0 123

RSL

Steady 246 194 1 8 3 52

Pulse 212 198 0 8 6 57

Burst 193 190 1 10 4 50

Table 7.4. Percentage overhead on RSH (500 k workers) and RSL (5 k workers) w.r.t. baseline at maximum load

system RSL. Table 7.4 reveals that the response time overhead on system RSH for outline monitoring

increases by 95 % and 97 % under Steady and Burst loads respectively, and by 194 % and 190 % on RSL.

By comparison, inline monitoring inflates the response time by 4 % and 55 % under Steady and Burst

loads on RSH, and by 246 % and 193 % on system RSL. In fact, the absolute response time due to inline

monitoring is slightly higher than that of outline monitoring on system RSL (115.80 ms vs. 98.40 ms

under Steady load and 181.85 ms vs. 179.65 ms under Burst load). Figure 7.9 shows that both approaches

consume comparable amounts of memory. However, decentralised outline monitoring utilises more

of the scheduler than its inline equivalent, owing to the reconfiguration and trace event routing that

outline monitors conduct.

Despite the cost paid in terms of scheduler utilisation, our decentralised approach yields marginally

lower latency than inline monitoring. We note that the slight degradation in the response time for inline

monitoring arises from a combination of the increased trace event throughput and delay in the analysis,

which results in frequently ‘pausing’ worker processes. As remarked in section 7.2.2, this behaviour for

inlined monitors could potentially deteriorate further in cases of slower runtime analyses. Decentralised

monitoring mitigates this issue by decoupling the instrumentation and analysis tasks. The results of our

experiments conducted on set-up SUE using system RSH (100 k workers) and system RSL (1 k workers)

are plotted in figure C.2, and are in line with the conclusions drawn above.

7.4 Discussion

Monitoring reactive systems calls for component-based techniques that are reactive, i.e., they are

responsive, resilient, elastic, and message-driven. This chapter validates our decentralised outline

monitoring algorithm detailed in chapter 5 w.r.t. these four reactive characteristics via a systematic

empirical study. We show that the qualitative arguments for decentralised outline monitoring in

section 1.1.2 are in line with the quantitative evidence collected in experiments, confirming that our

algorithm is, indeed, reactive. In particular, these experiments affirm that the overhead induced by

decentralised outline monitoring is feasible in practice. Our comprehensive evaluation of sections 7.2

and 7.3 considers (i) different combinations of hardware and software, set up with (ii) two reactive

system models that test edge-case and general-case scenarios, under (iii) high loads that go beyond

the state of the art in RV, using (iv) realistic load profiles that, to the best of our knowledge, are not
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considered in the literature. These parameters give us assurance that our conclusions are portable to

other platforms, generalisable to various reactive architectures under different load models, and, more

importantly, applicable to real-world cases; this is generally not done in other studies e.g. [184, 185, 62,

61, 197, 43, 176, 52, 53, 219, 71, 72, 70, 113, 87, 89, 39, 180, 158, 47]. Our evaluation of decentralised outline

monitoring is conducted alongside its widely-adopted inline counterpart [91, 90, 25], providing us with a

reference point against which our results can be interpreted in a general way. Under these conditions, we

also demonstrate that centralised monitoring exhibits none of the attributes of reactive systems due to

its inherent analysis bottleneck (e.g. Schneider et al. [205] make a similar observation about bottlenecks

in their experiments). Moreover, centralised set-ups are prone to failure in scenarios with high-loads

such as the ones we used.

Section 7.3 compares decentralised outline and inline monitoring in further detail. It shows that

in situations with low to mild concurrency, where system components engage in long-running tasks,

outline monitoring performs better than in scenarios involving short-lived tasks (cf. section 7.2). In fact,

outline monitoring induces comparable memory and response time overhead to that of inline monitors,

making it the preferred choice in such cases owing to the other benefits it offers (see section 2.1.4)

We conjecture that outlining also yields low overhead—on par with inlining—in high concurrency

settings where the number of system components becomes stable, as in section 7.3. In such cases, our

decentralised approach should perform well, since it minimises the reconfiguration and message routing

that is needed to organise the monitor choreography continually. Since we aim for generality, the results

presented in this chapter assume a worst case scenario where every component of the SuS is monitored.

On this account, we expect decentralised outline monitoring to induce even lower overhead when the

number of system components monitored is reasonable (e.g. a few hundreds). Both of these assertions

warrant further investigation and are left as future work.

7.4.1 Related Work

Our empirical study explores various aspects of runtime monitoring, such as the instrumentation

overhead, robustness, and scalability of monitoring approaches, using different metrics to gauge the

effect of runtime overhead. While these topics are discussed at different depths by the RV community, our

observations in sections 7.2 and 7.3 call into question some of these notions that tend to be occasionally

overlooked by, or not satisfactorily tackled in the literature.

Numerous works (e.g. [124, 34, 71, 67, 70, 68]) based on inlining do not delineate the instrumentation

and runtime analysis aspects. This is common in monolithic settings (see section 2.1.4), where the

instrumentation and analysis tasks are coalesced, and the former is often assumed to induce minimal

runtime overhead [91, 25]. Consequently, many inlining-based approaches focus on the efficiency of the

analysis without considering the instrumentation cost (e.g. Falcone et al. [95] attribute the overhead

to the analysis aspect alone). This line of reasoning for single-component systems is often ported to

the concurrent setting. For instance, [175, 209, 42, 61, 207, 99, 24] propose efficient runtime monitoring

algorithms but do not account for, nor quantify the overhead due to collecting trace events. Similarly,

[209, 61, 101] inline components with variants of vector clocks to exchange partial information via

messaging but overlook the potential memory overhead that may result from the increased size of

the message payloads. Section 7.2.1 shows that the overhead due to inlining in component-based

settings is non-negligible, which makes the efficiency claims in the cited works unsubstantiated from



7 Evaluating Decentralised Outline Runtime Monitoring · 100

an instrumentation overhead point of view. Tools such as [53, 51, 219, 47, 113, 229] that do quantify the

runtime overhead, aggregate the instrumentation and runtime analysis costs, making it difficult to gauge

whether potential inefficiencies arise from one or the other. Since the overhead due to the analysis of

events depends on different factors (e.g. table 7.2), the inability to isolate the respective costs of the

instrumentation and analysis limits the interpretability of their results.

The notion of perceived minimal overhead induced by instrumentation is often extended to offline

monitoring [100], where events are persisted for subsequent processing. Certain surveys [95, 55] or

introductory textbooks [68] either claim that offline monitoring imposes low overhead because the system

observation consists ‘only’ in recording trace events, or are otherwise vague about this overhead [25, 100].

Section 7.2.1 makes a strong case that all forms of instrumentation induce a degree of overhead that

is unavoidable when observing software systems. In addition, this overhead will be influenced by the

technique employed to persist events (e.g. file, DB, pub-sub infrastructures [217]) for the case of offline

monitoring. We have also shown that the instrumentation overhead depends on the load that the SuS is

subjected to, e.g., the difference in overhead between the inline and baseline plots is more evident under

Burst load than with Steady load (figure 7.2). Moreover, section 7.2.3 reveals that in our benchmarks, a

sizeable portion of the runtime monitoring overhead originates from the instrumentation for the cases

of inline and decentralised outline monitoring.

Figures 7.3 and 7.5 show how the performance of our online centralised monitors degrades when a

minimal analysis cost is added on top of the instrumentation. Despite this bottleneck-induced issue that

leads to crashes in figure 7.3, centralised monitoring is still employed by RV tools that target concurrent

software. One plausible reason for this is that the empirical evaluation of such RV tools lacks proper

benchmarking (e.g. [71, 21, 209, 101, 131]), or utilises meager loads that fail to exercise the tool and expose

the shortcomings of centralised approaches (e.g. [180, 113, 51, 53, 52, 12, 170]). Another potential motive is

that centralised offline approaches can avoid overloading the central monitor by controlling the rate at

which trace events are read from storage and subsequently analysed [99, 101]. In offline mode, this is done

under the assurance that, regardless of the speed pre-recorded traces are processed with, no event loss

occurs. However, implementing this strategy in online use cases is typically hard in reactive scenarios

where system components continually generate streams of trace events directed toward one central

monitor. Throttling events in an asynchronous setting, while possible by applying back-pressure [153]

to system components, cannot be achieved unless the monitor heavily interferes with the SuS.

Monitoring is a cross-cutting concern [146] that can be encapsulated in own logic unit [95, 59, 68].

Various RV tools such as [70, 60, 52, 221, 13, 197] follow this separation-of-concerns approach where the

monitor analysis is kept isolated from the logic of the SuS. Our decentralised outline algorithm extends

this notion and separates the execution of the monitor logic from the system by executing monitors as

independent processes. This makes the approach less sensitive to slowdowns in the analysis, enabling

it to runtime check richer properties whose corresponding monitors could potentially induce varying

delays (refer to discussion in section 7.2.3). Online tools using centralised monitoring (e.g. [71, 23]) are

sensitive to delays in the analysis since these indirectly affect the speed with which events are processed

from the central tracing entity. As seen in section 7.2, this increases the consumption of memory, which

coupled with the SPOF, could render such tools inapplicable in practice.

RV for single-component systems generally uses the execution slowdown as its principal indicator

of runtime overhead (see discussion in section 1.1.3). In reactive settings, this one-dimensional view is
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inadequate, as the omitted evidence could bias the interpretation of empirical results, e.g. in consulting

only figure 7.6 (top), one would falsely conclude that inlining induces the lowest slowdown without

affecting the response time. Despite this, approaches for concurrent RV still base their findings on

the execution slowdown (e.g. Neykova and Yoshida [185]) or memory consumption (e.g. Meredith

et al. [176]); [51, 52, 219, 47, 205] are few of the notable exceptions that account for the response time.

Others [67, 87, 96] abstract from these metrics, and concentrate instead on the volume of messages that

are exchanged between component monitors. While the count of messages exchanged is indicative of

efficient communication, it makes it difficult to quantify the overhead in practical terms e.g. response

time, and memory consumption. The volume of message exchanges is not a metric we track in our

benchmarks. Yet, it warrants further consideration, particularly when used alongside our current metrics

identified in section 6.1.



8 Conclusion

This thesis investigates how the correctness of reactive systems can be established dynamically at

runtime. It considers a lightweight monitoring approach called RV that circumvents the issues connected

with traditional pre-deployment verification methods, such as testing and model checking. One major

obstacle of RV for reactive systems is in choosing a monitoring technique that does not impinge on the

reactive characteristics of the SuS. We hold that this is attainable only if the monitoring set-up is itself

reactive.

This thesis investigates a novel decentralised outline monitoring approach based on this precept. The

approach treats the SuS as a black box: it instruments monitors dynamically and in an asynchronous

fashion, which is more attuned to the requirements of reactive architectures. Our development is

systematic. We adopt the modular RV practice advocated by Aceto et al. [6, 8], which delineates the

semantics of the specification language used to describe the properties that the SuS should comply

with, and the semantics of the monitors that check for these property descriptions. The separation of

concerns prescribed by the authors gives a principled approach for studying what correct monitors

are, and for identifying properties that can be monitored at runtime. This enables the construction of

mechanical syntheses procedures that generate correct monitors for monitorable properties. Equally

crucial, it permits us to directly map the constituent parts of our formal model to executable code

modules, giving us assurances that the correctness results obtained in the theory [6, 8] are preserved in

the implementation. Through our study, we make the following contributions.

(i) Build on the theoretical results of Aceto et al. [6] and augment their specification formalism,

operational semantics of monitors, and monitor synthesis procedure with predicates to reason on

the data carried by trace events. Our extensions make their model amenable to practical use. We

implement these extensions and give a technique for instrumenting inline monitors. Additionally,

we define an asynchronous instrumentation relation that decouples the operation of the SuS and

monitors, in line with the tenets of reactive architectures.

(ii) Devise a decentralised outline monitor instrumentation algorithm that instantiates the asyn-

chronous instrumentation of contribution (i). Our algorithm employs a tracing infrastructure to

collect events as the SuS executes and instruments monitors dynamically based on key events

observed in the trace. The algorithm accounts for the interleaving of trace events that arise from

the asynchronous execution of the SuS and monitors, guaranteeing that the events are reported to

monitors in the correct order and without loss.

(iii) Develop a configurable RV benchmarking framework tailored for reactive systems. The framework

can generate synthetic SuS models that are shown to reproduce the realistic behaviour of master-

worker systems. Our tool collects performance metrics relevant to reactive software, thereby

102
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giving a multi-faceted depiction of the overhead induced by monitoring tools. This is conducive to

assessing such tools reliably, increasing our confidence in their real-world application.

(iv) Give an extensive evaluation of the overhead induced by our implementation of decentralised

outline instrumentation of contribution (ii), using the benchmarking tool developed in (iii). We com-

pare this algorithm against our implementations of inline and centralised outline instrumentation—

two popular methods used in the state-of-the-art RV tools. These benchmarks demonstrate that

the decentralised approach we propose induces feasible overhead, which for typical cases, is

comparable to or outperforms, the inline and centralised approaches. We are unaware of other

comprehensive empirical RV studies such as ours that compare decentralised, centralised, and

inline monitoring.

These contributions culminated in a suite of tools towards our research goal that:

• demonstrates that the formalisations and methods proposed in contributions (i) and (ii) are imple-

mentable in a general-purpose language that targets applications built on the reactive principles;

• debunks the commonly-held belief that decentralised outline instrumentation is necessarily infeasible,

showing that it induces acceptable overhead, which in typical cases, is comparable to inlining;

• confirms that centralised monitoring is prone to scalability issues, poor performance, and failure,

which makes it generally inapplicable to reactive system settings.

In cases where inlining cannot be performed (see section 2.1.4 for reasons why), a decentralised outline

instrumentation approach such as the one we propose is the only viable method to conduct runtime

monitoring. Readers may access the source code for the artefacts developed for this thesis here.

8.1 Avenues of Future Research

Our investigation is by no means conclusive; we believe that other research avenues may be followed as

a result of our work. The ones suggested below are listed in no particular order.

8.1.1 Parametrised Recursion Variables

Certain properties cannot be expressed in our logic `HMLd. Consider an asynchronous server that

exhibits the actions con, end, req, and res. The actions con and end respectively demarcate the start

and termination of a communication session with our server, whereas req and res denote asynchronous

requests and responses. One safety property that this system should observe is that in any communication

session (starting with con and terminating with end), all requests are fulfilled. This property describes

the language of 𝜔-words in which every finite communication session, the number of observed req

actions equals the number of observed res actions. Such a property is not 𝜔-regular.

We propose an extension to the logic that augments the (i) least and greatest fixed point constructs with

parametrised variables 𝑥,𝑦 ∈DVar, and expressions 𝑒, 𝑓 ∈Exp, i.e., min𝑋 (𝑥𝑥). (𝜑) (𝑒) and max𝑋 (𝑥𝑥). (𝜑) (𝑒),
and (ii) recursion variables with expressions, i.e., 𝑋 (𝑒). This enables data values to be handed down

between successive unfolding of recursive constructs (see also [171, 125]). Via this logic, the aforemen-

tioned property can be expressed as the formula below, where the counter 𝑦 is used to track the number

http://duncanatt.github.io/detecter
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of requests and responses processed by the server.

max𝑋 (𝑥).
(
[con]max𝑌 (𝑦).

(
[req]𝑌 (𝑦+ 1) ∧ [res]𝑌 (𝑦− 1)∧

[end,𝑦 = 0]𝑋 (0) ∧ [end,𝑦 ≠ 0]ff
)
(𝑥)

)
(0)

We envisage this investigation to replicate the programme of study carried out in [118, 6, 8]. This

entails determining possible monitorable logic fragments (e.g. safety and co-safety), studying whether

the fragments identified can syntactically characterise all the expressible monitorable properties, and

devising syntheses procedures that generate monitors from these fragments. The study can be undertaken

for both the linear-time and branching-time interpretations of this logic.

8.1.2 Managing the Number of Active Monitor States

Our monitoring algorithm of section 4.3 considers all the possible monitor states, thereby ensuring that

monitors are partially-complete (definition 3.3). The operational rules mDisYL, mDisNL, mConYL, and

mConNL (and their symmetric counterparts) of figure 3.2 are used to terminate redundant monitor states

as soon as these are encountered during the runtime analysis. Section 4.3 also argues that emulating

the disjunctive and conjunctive parallel composition constructs minimises overhead, by comparison

to forking independent component sub-monitors. Monitoring performance may be further optimised

by placing a bound on the number of active monitor states that our algorithm manages at runtime.

This pragmatic trade-off comes at the expense of sacrificing partial-completeness, which manifests as

possibly-missed verdict detections (e.g., the work by Grigore et al. [124]). Monitors that are subject to

missed detections may not always be ideal in monolithic settings where applications often consist of a

single instance. However, reactive architectures can alleviate the effect of missed detections by virtue

of replicated components: such a set-up improves the chance that potential detections missed by one

monitor may still be reached by other monitor replicas. Note that missed detections still preserve our

non-negotiable requirement of sound monitoring, i.e., accept (resp. reject) verdicts that monitors flag

imply formulae satisfactions (resp. violations) in the logic.

8.1.3 Component Replication and Monitorable Properties

Component replication opens the possibility of analysing more than one trace of the same component

instance and, potentially, monitoring for more properties. For instance, the regular `HML branching-time

formula, 𝜑11 = [a]ff∨ [b]ff (see section 2.2), is not monitorable in a traditional RV set-up assuming a

single execution [6]. Intuitively, this is because observing one trace prefix, say a, that leads to a violation

of [a]ff, still requires a second trace to determine whether 𝜑11 is violated. However, multiple traces of

the same component instance, e.g. one trace prefix that starts with a and another starting with b, provide

the monitor with sufficient evidence to flag a rejection [4].

The above rudimentary example conceals several challenges. Consider the branching-time formula

𝜑12 = [a] ( [b]ff∨ [c]ff), expressing the requirement that ‘after performing the action a, the state that

the system reaches can neither perform the action b nor c’. Trace prefixes such as a.b and a.c do not

give sufficient information as to whether this property is violated. The reason behind this is that the

transitions 𝑝1
a−→ 𝑝2

b−→ 𝑝3 −→ ··· and 𝑞1
a−→𝑞2

c−→𝑞3 −→ ··· (for some 𝑝𝑖 ,𝑞 𝑗 ) that give rise to these

traces, potentially refer to unrelated paths of the component execution graph. When the states 𝑝1 =𝑞1
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and 𝑝2 =𝑞2, the traces a.b and a.c share the same initial state 𝑝1 and a-derivative state 𝑝2; since 𝑝2 can

perform both actions b and c, formula 𝜑12 is violated. If 𝑝2 ≠𝑞2, however, 𝜑12 is not violated.

Different methods can be explored to address the lack of information in execution traces. One

conceivable route is to annotate traces by inlining the monitored component to produce trace events that

embed component state metadata. In actor-based paradigms (e.g. Erlang, Akka), such a notion of state

could consist of a snapshot of all the internal variables that a process mutates over time as a side-effect

of the messages it sends and receives. For example, the monitor inlining procedure of section 4.5 can be

modified to extend the event payload (e.g. lines 4 and 6 in figure 4.5b) to include the values of variables

Tok and NextTok. It is worth noting that the solution we describe may be subject to the limitations of

inlining (see section 2.1.4), and implementing a similar procedure with outlining will depend on the

flexibility of the tracing infrastructure used.

8.1.4 Failure Injection

Our benchmarking framework of chapter 6 can be naturally extended to accommodate a second

widespread software architecture, namely peer-to-peer systems. This gives the tool more scenario

coverage and could circumvent the performance bottleneck associated with master-worker set-ups [202].

Another aspect that warrants consideration is the addition of controlled fault injection based on the

probability distributions we currently employ to induce load on benchmark models (i.e., Steady, Pulse,

and Burst loads). Randtoul and Trinder [195] propose a reliability benchmark for Erlang systems that

inject faults in pairs of actor processes that exchange messages. The authors induce failures by fork-

ing dedicated ‘killer’ processes at predetermined intervals to terminate processes, thereby simulating

fail-stops [83]. This approach may not be applicable to our case since the creation of ‘killer’ processes

induces additional overhead that can influence the execution of benchmark models, and subsequently,

bias the results of empirical experiments. We propose an alternative lightweight design that integrates

the termination logic within system processes. Link and communication omission failures [83] are a

class of failures whereby work requests that are in transit between components (e.g. master and worker)

can be dropped, delayed, duplicated, or mutated. This can be implemented by adding proxy logic inside

system processes to emulate these failures. Modelling failures enable us to test other facets of runtime

monitoring. One metric worth considering is the detection time, which measures the time monitors take

to reach verdicts in the face of failure. This metric is particularly relevant to a set-up where monitors

consider traces from replicated components since it can be used to gauge the efficacy of verdict detection

under different probability models and failure severity.

8.1.5 Decentralised Inline and Outline Monitoring

Our decentralised outline monitoring instrumentation leverages the native tracing infrastructure pro-

vided by the EVM, making it accessible to any application that executes on the platform (e.g. Le Brun

et al. [162] use outline monitors to verify properties of an Elixir implementation of the Raft consensus

algorithm [190]). Inline instrumentation relies on source-level weaving, and is, therefore, limited to

Erlang code. The next stage of development is to revisit inlining and add support for BEAM object code

compiled with debugging symbols. Lifting assumption A1 (i.e., components do not fail-stop or exhibit

Byzantine failures) and A2 (i.e., messaging is reliable) opens up our decentralised approach to distributed
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settings, introducing various challenges. Chief among these challenges is the capacity of the instru-

mentation to manage failure. Notable works that can inform this research direction are those by Basin

et al. [31], which considers the problem of monitoring distributed systems with failing components and

network links, and Bonakdarpour et al. [45] that address failure within monitors themselves, specifically,

in the case of fail-stop.



A Further Decentralised Outline Instrumentation Details

Our message routing and forwarding operations described in section 5.2 enable tracers to implement

hop-by-hop routing. These operations are given in listing 5. The function self () on line 2 returns the

PID of the calling process. Listing 5 includes the Tracer function that is forked in listing 2 to execute

the core tracer logic of listings 3 and 4. Detach is used to signal to the router tracer 𝑝t that the system

process 𝑝s is being tracer by a new tracer, 𝑝′t. Prior to issuing the message, detach invokes Preempt so

that 𝑝′t takes over the tracing of system process 𝑝s. TryGC determines whether a tracer can be safely

terminated. For the case of the external analysis variant of figure 5.1a, TryGC also signals the analyser

to terminate. The analyser terminates asynchronously so that it can process potential trace events it

might still have in its message buffer.

Start in listing 6 launches the SuS and monitoring system in tandem. The operation accepts the code

signature 𝑔, as the entry point of the SuS, together with the instrumentation map, Φ. As a safeguard that

prevents the initial loss of trace events, the SuS is launched in a paused state (line 2) to permit the root

tracer to start tracing the top-level system process. Root resumes the system (line 7), and begins its

trace inspection in direct mode, as shown on line 9.

The tracing mechanism is defined by the operations Trace, Clear, and Preempt listed in listing 7,

and are overviewed in section 5.2.1.

Expect: 𝑘.type= evt∨𝑘.type= dtc

1 def Route(𝑘,𝑝t)
2 𝑝t ! ⟨rtd,self (),𝑘⟩

3 def Tracer(𝜍,𝑚,𝑝s,𝑝t)
# New tracer state 𝜍 ′ initialised with an

# empty routing map ∅, a copy of the

# instrumentation map 𝜍 .Φ, and the

# traced-component map is set to the

# (first) process being traced, 𝑝s

4 𝜍 ′←⟨Π←∅,𝜍 .Φ,Γ←{⟨𝑝s,•⟩}⟩
5 Detach(𝑝s,𝑝t)
6 𝑝m← fork(𝑚) executable monitor

# Start in •mode to prioritise routed events

7 Loop•(𝜍 ′,𝑝m)

Expect: 𝑘.type= rtd

8 def Forwd(𝑘,𝑝t)
9 𝑝t !𝑘

10 def Detach(𝑝s,𝑝t)
11 𝑝′t← self ()
12 Preempt(𝑝s,𝑝′t)
13 𝑝t ! ⟨dtc,𝑝′t,𝑝s⟩

14 def TryGC(𝜍,𝑝m)
15 if (𝜍 .Γ= ∅∧𝜍 .Π= ∅)
16 Signal analyser 𝑝m to terminate
17 Terminate tracer

Listing 5. Operations used by the (◦) and priority (•) tracer loops
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1 def Start(𝑔,Φ)
# Pausing allows root tracer to be set

# up; no initial message loss

2 𝑝s← fork(𝑔) in paused mode
3 𝑝t← fork(Root(𝑝s,Φ))
4 return ⟨𝑝s,𝑝t⟩

5 def Root(𝑝s,Φ)
6 Trace(𝑝s,self ())
7 Resume system 𝑝s

8 𝜍←⟨Π←∅,Φ,Γ←{⟨𝑝s,◦⟩}⟩
# Root tracer has no monitor

9 Loop◦(𝜍,⊥)

Listing 6. System starting operation and root tracer

1 def Trace(𝑝s,𝑝t)
2 if (𝑝s is not traced)
3 Set tracer for 𝑝s to 𝑝t

# 𝑝t will trace descendants of 𝑝s , A5

4 while 𝑝s’s tracer is set do

5 𝑠← next event exhibited by 𝑝s

6 𝑒← encode 𝑠 as a message
7 𝑝t ! 𝑒
8 end while

Expect: 𝑝s’s tracer is set
9 def Clear(𝑝s,𝑝t)

10 if (𝑝s is traced)
11 Clear tracer 𝑝t from 𝑝s

# 𝑝t still traces descendants of 𝑝s , A5

12 repeat

# Wait for 𝑝s ’s in-transit trace event

# messages to get delivered to 𝑝t , A2

13 until trace events of 𝑝s are delivered to 𝑝t

14 def Preempt(𝑝s,𝑝t)
15 𝑝′t← 𝑝s’s tracer
16 Clear(𝑝s,𝑝′t)
17 Trace(𝑝s,𝑝t)

Listing 7. Abstraction of the operations offered by the tracing infrastructure
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Our tool implementation supports a succinct pattern notation where atomic values can be directly

specified in patterns, e.g. ∗⟨_,𝑥2𝑥2⟩,𝑥2 =atom may be written as ∗⟨_,atom⟩. This notation is employed in the

ensuing examples. We elide redundant binders and variables from formulae patterns for succinctness

using the ‘don’t care’ pattern _, when necessary.

B.1 Monitoring the Master-Worker Model

The master-worker model used in our benchmarking tool of chapter 6 employs a simple protocol to

track the work requests distributed to different workers. Workers are initialised with IDs, which we

denote by the placeholder Id, which enables the master to track the progress of tasks assigned. Each

worker task is comprised of a sequence of work requests totalling NumReqs. Work requests in a task are

incrementally numbered with a sequence number, ReqNum, where 1 ≤ ReqNum ≤NumReqs, identifying

the request submitted to a worker. The master process relies on the request number to determine when a

task assigned to a particular worker is completed. Tasks are marked complete when ReqNum=NumReqs,

at which point, the master sends a termination instruction to the worker. Work requests are uniquely

identifiable from all other work requests issued by the master via the triple ⟨Id, ReqNum,NumReqs⟩. The

work responses relayed by workers to the master are identified in the same manner. The following

summarises the different messages exchanged between the master and worker processes:

• ⟨Pidm, ⟨chunk, ⟨Id, ReqNum,NumReqs⟩⟩⟩: work request message sent by the master process to the

worker

• ⟨Pidm, ⟨term, ⟨Id, ReqNum,NumReqs⟩⟩⟩: termination message sent by the master process to the worker

once a task is complete, i.e., ReqNum=NumReqs

• ⟨Pidw, ⟨𝑐ℎ𝑢𝑛𝑘, ⟨Id, ReqNum,NumReqs⟩, ack⟩⟩: work response message sent by the worker process to

the master

• ⟨Pidw, ⟨𝑐ℎ𝑢𝑛𝑘, ⟨Id, ReqNum,NumReqs⟩, complete⟩⟩: completion message sent by the worker process

to the master when the last work request in a task has been processed, i.e., ReqNum=NumReqs

The local properties used in section 6.5.1 to monitor the master-worker models concern the operation

of workers, and are specified from their point of view.

Example B.1. Consider the property stating that ‘no worker ever crashes’, specified as the recursive

maxHMLd formula:

[^⟨_,_,_,_,_⟩]max𝑋 .
(
[?⟨_,_⟩] ([ ! ⟨_,_,_⟩]𝑋 ∧ [∗⟨_,_⟩]ff) ∧ [∗⟨_,_⟩]ff

)
(𝜑13)
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Formula 𝜑13 does not make use of the data embedded in work requests issued by the master. It merely

matches the shape of the crash event (∗) that is not allowed to arise once the worker process enters its

work request-response handling loop. ■

Example B.2. The property that states that ‘the work number is larger than 0’ is written as follows:

[^⟨_,_,_,_,_⟩]max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum, _⟩⟩⟩,ReqNum ≥ 1] [ ! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum, _⟩⟩⟩,ReqNum< 1]ff

ª®®®®¬
(𝜑14)

Formula 𝜑14 checks the work request sequence number to determine whether it carries a value larger

than 0. The second pair of necessities that match the receive event shape and work request payload

instantiates the variable ReqNum with the value of the work request sequence number. A violation of

𝜑14 occurs when ReqNum< 1, otherwise the formula unfolds after the third necessity [ ! ⟨_,_,_⟩] matches

a send event. ■

Example B.3. The property stating that ‘workers do not receive more requests than expected’ is specified

as:

[^⟨_,_,_,_,_⟩]

max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum,NumReqsNumReqs⟩⟩⟩,ReqNum ≤NumReqs] [ ! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, _, ReqNumReqNum,NumReqsNumReqs⟩⟩⟩,ReqNum>NumReqs]ff

ª®®®®¬
(𝜑15)

Similar to example B.2, formula 𝜑15 relies on the current work request sequence number issued by the

master process and the total number of expected requests. The variable NumReqs becomes instantiated

with the latter value when a receive trace event, together with its work request payload, matches the

second necessity modality. Subsequently, NumReqs is compared against ReqNum to determine whether

the work request sequence number has been exceeded. ■

Example B.4. The property stating that ‘workers receive only their responses’ is specified thus:

[^⟨_,_,_,_,[Id1Id1, _]⟩]max𝑋 .

©«
[?⟨_,⟨_, ⟨chunk, Id2Id2, _, _⟩⟩⟩, Id1 = Id2 ] [ ! ⟨_,_,_⟩]𝑋

∧

[?⟨_,⟨_, ⟨chunk, Id2Id2, _, _⟩⟩⟩, Id1 ≠ Id2 ]ff

ª®®®®¬
(𝜑16)

Formula 𝜑16 compares the worker ID to detect whether a work request sent by the master was meant

for another worker. The very first necessity, ^⟨_,_,_,_,[Id1Id1, _]⟩, matches the process initialisation event

pattern, including the shape of the argument list used to launch worker processes. Worker processes are

initialised with two arguments, the first of which is the worker ID assigned by the master; 𝜑16 stores this

value in the variable Id1. In the second pair of necessity modalities that match the receive event and

the shape of the embedded work request payload, instantiate the variables Id2. The Boolean constraint

Id1 ≠ Id2 in the symbolic action of the violating conjunct of 𝜑16 ensures that the formula is violated only

when the worker does not match with the worker ID carried by the work request. ■



B Case Study: Monitoring Reactive Applications · 111

Cowboy and Ranch

Connections supervisor

𝐴1

.

.

.

𝐴𝑛

PIDcs

PIDA1

PIDAn

Protocol handler

Connection process

Request process

PIDCP

PIDRP

Client

Code = 200 | 500 | 400. . .

Status = normal | crash

TCP connect

{conns_sup, start_prot, PIDA1, . . . }

PIDCS

HTTP request

{tcp, “GET /token. . . ”}

HTTP reply

tcp_cls

f
o
r
k

{h
an
ds
ha
ke
,
.
.
.
}

{E
XI
T,

PI
D C
P
,
St
at
us
}

f
o
r
k
,
“G
ET

/t
ok
en
.
.
.
”

{r
es
p,

Co
de
,
:4
a
61

73
}

{E
XI
T,

PI
D R
P
,
St
at
us
}

exit

exit

1

2

3

4 5

6

7

8

9

10

1
1

12

1314

1
5

Figure B.1. The Cowboy and Ranch communication protocol

B.2 The Cowboy and Ranch Communication Protocol

Figure B.1 describes a fragment of the interaction protocol that Cowboy and Ranch use to service HTTP

requests. In this protocol, acceptors wait on the socket for incoming client connections, step 1 . When a

connection is established on the server, the acceptor exchanges the newly-acquired transmission control

protocol (TCP) socket information with the connections supervisor, as steps 2 and 3 indicate. This

instruction notifies the connections supervisor that a new client connection needs handling; in turn, the

former forks a new connection process and delegates this task, steps 4 and 5 . The acceptor is informed

accordingly in step 6 , where it waits anew for future connections. Henceforth, the connection process

has complete ownership of and communicates directly with the client socket. Step 8 illustrates the

point when the connection process forks the request process, specifying as argument the HTTP request

data it acquires from the socket in step 7 . Once the request process completes its execution, it issues a

reply to its connection process and terminates, steps 9 and 10 . This reply is comprised of the HTTP

response code and respective payload that the connection process communicates to the client in step
12 . A socket closed notification is sent by the Erlang TCP library, step 13 , whereupon the connection

process terminates in step 14 . Messages {EXIT, Pid, Status} in steps 11 and 15 result from Erlang process

linking, and are issued by the EVM when processes terminate [57]. The connection and request process

pair is termed the protocol handler, where the interaction between the two happens in lockstep, i.e., steps
8 to 13 are sequential.
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B.3 Monitoring Cowboy and Ranch

Example B.5. Recall the formula 𝜑rp from section 4.6, stating that ‘a request process does not issue HTTP

responses with code 500, nor does it crash’.

max𝑋 .

©«
[ ! ⟨_,_,{resp, codecode, . . . }⟩, code = 200]𝑋∧

[ ! ⟨_,_,{resp, codecode, . . . }⟩, code = 500]ff∧

[∗⟨_,statstat⟩, stat = crash]ff

ª®®®®¬
(𝜑rp)

Its corresponding synthesised monitor,𝑚𝜑rp , consists of a recursion construct whose body is composed

of the three sub-monitors 𝑚200, 𝑚500, and 𝑚crash conjuncted in parallel. The monitor 𝑚200 handles

the case when the HTTP response code is 200, unfolding the monitor via the recursion variable 𝑋

if code = 200, or reaches the verdict yes otherwise. Monitor 𝑚500 flags a rejection verdict no when it

analyses a response message containing the response code 500. Analogously, monitor𝑚crash flags no

when an error event with the status crash is detected.

𝑚𝜑rp = rec𝑋 . (𝑚200 ⊗𝑚500 ⊗𝑚crash) (𝑚𝜑rp )

𝑚200 =


( ! ⟨_,_,{resp, codecode, . . . }⟩, code = 200) .𝑋+

( ! ⟨_,_,{resp, codecode, . . . }⟩, code≠ 200) .yes
(𝑚200)

𝑚500 =


( ! ⟨_,_,{resp, codecode, . . . }⟩, code = 500) .no+

( ! ⟨_,_,{resp, codecode, . . . }⟩, code≠ 500) .yes
(𝑚500)

𝑚crash =


(∗⟨_,statstat⟩, stat = crash) .no+

(∗⟨_,statstat⟩, stat ≠ crash) .yes
(𝑚crash)

Figure B.2 details how the trace ‘ ! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩.. . .’ exhibited by a Cowboy re-

quest process bearing the PID PIDRP leads the monitor 𝑚𝜑rp to a violation verdict. Before analysing

events, monitor 𝑚𝜑rp unfolds the recursion variable 𝑋 of sub-monitor 𝑚200 by transitioning inter-

nally via mRec in step 1 . The resulting parallel composition of monitors is reduced by applying the

rule mPar twice. In sub-derivation 2.1 , mPar reduces
(
( ! ⟨_,_,{resp, codecode, . . . }⟩, code = 200) .𝑚rp +

( ! ⟨_,_,{resp, codecode, . . . }⟩, code ≠ 200) .yes
)
⊗𝑚500 to the monitor yes⊗no, using the respective sub-

derivations 2.1.1 and 2.1.2 obtained from mChsR and mChsL. For example, mChsL applied to𝑚500 reduces

the monitor to no when the trace event ! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩ is analysed. This follows

from rule mAct, where match

(
! ⟨PIDRP,PIDCP,{resp, 500, . . . }⟩, ! ⟨_,_,{resp, codecode, . . . }⟩

)
yields the

substitution [500/code], and the instantiated Boolean constraint, (code = 500) [500/code], is satisfied. The

application of mChsR to monitor𝑚crash in sub-derivation 2.2 follows a similar argument. Finally, sub-

derivations 2.1 and 2.2 are used as premises to mPar, yielding yes⊗no⊗yes in 2 . The latter monitor is

reduced via mConYRand mConYLto reach the violating verdict no.

The remaining examples briefly overview other properties that were used when evaluating Cowboy.

Readers should consult the depiction of the protocol of figure B.1 while reading these examples.
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Example B.6. Formula 𝜑acc concerns Ranch acceptor components that listen to incoming TCP requests.

max𝑋 .

©«
[ ! ⟨acc1acc1,csup1csup1,{conns_sup, start_prot, _, _}⟩]©«
[?⟨acc2acc2,csup2csup2⟩,acc1 = acc2∧csup1 = csup2 ]𝑋∧

[?⟨acc2acc2,csup2csup2⟩,acc1 = acc2∧csup1 ≠ csup2 ]ff
ª®¬
ª®®®®¬

(𝜑acc)

It states that when a new connection is established, the acceptor, denoted by the binder acc1acc1, issues

the request {conns_sup, . . . } to the connections supervisor process, csup1csup1. The property ensures that

the same process acknowledges back to the sending acceptor, i.e., acc1 = acc2∧csup1 = csup2. ■

Example B.7. Formula 𝜑cp specifies the interaction protocol that a Cowboy connection process should

follow when servicing a client HTTP request.

max𝑋 .

©«

[?⟨cprc1cprc1,{handshake, . . . }⟩] [?⟨cprc2cprc2,{tcp, req1req1}⟩, cprc1 = cprc2 ] ↱

[_⟨cprc3cprc3,rprc1rprc1,req_prc,start,req2req2⟩, cprc2 = cprc3∧ req1 = req2 ] ↱

©«

[?⟨cprc4cprc4,{resp, 200, . . . }⟩, cprc3 = cprc4 ] ↱

©«
[?⟨cprc5cprc5,{EXIT, rprc2rprc2, normal}⟩, cprc4 = cprc5∧ rprc1 = rprc2 ] ↱

[?⟨cprc6cprc6,tcp_cls⟩, cprc5 = cprc6 ]𝑋∧

[?⟨cprc5cprc5,{EXIT, rprc2rprc2, crash}⟩, cprc4 = cprc5∧ rprc1 = rprc2 ]ff

ª®®®®¬
∧

[?⟨cprc4cprc4,{resp, 500, . . . }⟩, cprc3 = cprc4 ]ff

ª®®®®®®®®®®®¬

ª®®®®®®®®®®®®®®®®®®¬

(𝜑cp)

Connection processes interact with the connections supervisor through a handshake before reading

the HTTP request directly from the TCP socket (steps 5 and 7 in figure B.1). This interaction is given by

[?⟨cprc1cprc1,{handshake, . . . }⟩] [?⟨cprc2cprc2,{tcp, req1req1}⟩,cprc1=cprc2] in formula 𝜑cp. The binder cprc1cprc1 in the

first necessity becomes instantiated with the PID of the connection process, whereas req1req1 in the second

necessity becomes instantiated with the HTTP request data read from the socket. The third necessity uses

the fork action pattern _⟨cprc3cprc3,rprc1rprc1,req_prc,start,req2req2⟩. It describes the protocol step where the con-

nection process under analysis forks a request process via the function start in module req_prc, where

the argument specified must be the request data acquired from the socket. This constraint is imposed by

req1 = req2. If the fork trace event exhibited by the connection process matches the aforementioned fork

action pattern, the binder rprc1rprc1 is instantiated with the PID of the newly-forked request process (step 8 in

figure B.1). The necessity [?⟨cprc4cprc4,{resp, 200, . . . }⟩, cprc3 = cprc4 ] dictates that the connection, cprc4cprc4,

process receives a HTTP 200 response message from the request process. A violation of 𝜑cp occurs when

HTTP 500 is contained in the response message instead, [?⟨cprc4cprc4,{resp, 500, . . . }⟩, cprc3 = cprc4 ]ff.

We remark that the latter two necessities describing the receive actions w.r.t. HTTP response codes are

the counterparts to the send messages of formula 𝜑rp. The final steps of the protocol requires it to wait

for the request process rprc2rprc2 to terminate its execution normally, {EXIT, rprc2rprc2, normal} and afterwards,

wait for the TCP socket to close, receiving the message tcp_cls. The formula is however violated when

the connection process receives the message {EXIT, rprc2rprc2, crash}, informing it that the request process

crashed. Note that formula 𝜑cp ensures that all the sub-formulae describe the behaviour of the same

connection process (see figure B.1) by ensuring that cprc1 = cprc2 = cprc3 = cprc4 = cprc5 = cprc6. ■
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C.1 Moderate Loads
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Figure C.1. Gap in instrumentation and monitoring overhead on the system under moderate load benchmarks (100k
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D A Summary of the State of the Art

D.1 Concurrent Monitoring

There are a number of works [113, 21, 219, 52, 51, 71, 210, 39] that address RV in a local concurrent setting;

others [34, 97] use the term decentralised to refer to synchronous monitoring. A comparison of their

various characteristics is provided in table D.1.

D.2 Distributed Monitoring

Previous work for decentralised local monitoring [34] was extended by Colombo and Falcone [67] to a

distributed setting while retaining a number of core characteristics such as the decentralised approach,

and in particular, the availability of a common clock. Correctness properties over the global system

state are specified via LTL3; these are synthesised into decentralised component sub-monitors that are

organised across nodes on a network. The monitor choreography is arranged in the form of a tree,

reflecting the compositional structure of formulae, such that each child feeds intermediate results to its
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Attard and Francalanza [21] · ✓ ✓ · ✓ · ·

Duncan Paul Attard and Francalanza [219] ✓ ∗ ✓ · ✓ · ·

Aceto et al. [13] ✓ · · · ✓ ✓ ✓

Bauer and Falcone [34] ✓ ✓ · · ✓ ✓ ·

Berkovich et al. [39] · ✓ · ✓ · ✓ ·

Cassar and Francalanza [51] · ✓ ✓ · ✓ · ·

Cassar and Francalanza [52] · ✓ ✓ · ✓ · ·

Colombo et al. [71] · · ✓ · ✓ · ✓

Falcone et al. [97] · ✓ · · ✓ ✓ ·

Francalanza and Seychell [113] · ✓ ✓ · ✓ · ·

Sen et al. [210] ✓ ✓ ✓ ✓ · · ·

Table D.1. State-of-the-art on concurrent monitoring classified by characteristics (∗ denotes both)
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parent. System components operate in synchronous rounds, meaning that a unique global trace can

be reconstructed by combining multiple sub-traces collected locally by monitors at each component.

Monitor judgements are obtained by rewriting formulae in a compositional fashion: sub-constituents

of a formula are evaluated on events from the trace and progressively simplified by monitors until

the formula eventually equates to ⊤ or ⊥, at which point, the monitoring stops. The authors give a

proof of correctness of the monitor synthesis and show that a decentralised monitoring set-up induces

substantially lower communication overheads when compared to centralised or migrating monitors.

While the monitoring algorithm does not make any assumptions on the delay of messages, it does

assume a reliable connection between system components and monitors and also requires the number

of system components to remain fixed at runtime.

Basin et al. [31] is one of the few works that consider the problem of monitoring distributed systems

with failing components and network links. Despite the absence of a global clock, the monitoring

algorithm is based on the timed asynchronous model for distributed systems [75] that assumes the

availability of highly-synchronised physical clocks across nodes. Correctness properties are specified

over the global system state using metric temporal logic (MTL), a logic that allows the specification

of real-time properties. Monitors synthesised from MTL formulae are arranged in a choreographed

fashion in the form of a directed acyclic graph, following the compositional structure of formulae. A

monitor rooted at the graph handles the top-level formula being monitored, while other sub-monitors

are responsible for its sub-formulae constituents. During execution, sub-monitors propagate messages

to their parents to inform them about verdicts that have been reached for their respective sub-formulae

under analysis at that point in time. This enables the root monitor to formulate and eventually report

its verdict for the entire formula. Monitors attached to system components collect trace events locally;

these are timestamped by the system before being communicated to monitors, thereby enabling the

latter to compute the precise delay between events and check whether real-time constraints are met. In

addition, events are equipped with a locally-unique sequence number that allows monitors to detect

gaps that may arise between subsequent trace events, due to lost or delayed messages and process

crashes. We observe that events are totally ordered locally, and even though these may be delivered

out-of-order due to the asynchronous communication between monitors, a global ordering of events

may still be possible by virtue of the local timestamps. This is in contrast to the time-free model [107],

where events in a distributed system can only be partially ordered using logical clocks. The authors

argue that while the physical time drift that occurs between clocks on different locations might impinge

on certain monitoring verdicts, this is often acceptably small, and relying on timestamps from local

clocks for monitoring purposes is good enough in practical scenarios. They also show soundness for

their algorithm in the presence of failures, and completeness when no failure is assumed, i.e., a monitor

eventually reports a verdict for the given specification.

Bonakdarpour et al. [45] address failure within monitors themselves, specifically in the case of fail-stop.

They propose a framework for distributed fault-tolerant RV using a multi-valued temporal logic that

redefines the semantics of LTL, where the truth values represent a degree of certainty that a formula has

been satisfied or violated. Correctness properties are synthesised as choreographed automaton monitors

that interact asynchronously using the wait-free read/write shared memory model, which is known to be

equivalent to a message-passing model where less than half of the processes can fail-stop [83]. Monitors

have a partial view of the global system state and communicate with each other for a fixed number of
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rounds until a verdict about the global system state is reached. Verdicts are given from a set of possible

truth values associated with the property being monitored. The authors show that verdicts collectively

provided by monitors can be mapped to one that is computed by a centralised monitor having a full

view of the SuS.

RV of shared state concurrency programs has also been studied by Sen et al. [210], where decentralised

monitors are attached to different threads to collect and process trace events locally. In an earlier work

by the same authors [208], this investigation is conducted in a distributed setting using decentralised

monitors that are weaved into the SuS. Correctness properties are expressed in terms of PtDTL, a

variant of past-time LTL that is equipped with epistemic operators, allowing formulae specified on

the local state of system components to internally refer to the state of other remote components. In

this sense, a property about a particular component is interpreted over a projection of the global

system state. A PtDTL formula is synthesised into a monitor choreography reflecting its structure;

these are attached to different system components in order to collect trace events locally to minimise

communication overheads. Monitors in the choreography interact via asynchronous send and receive

operations and exchange partial information about the system state that is relevant to the property

under consideration. This information takes the form of a knowledge vector, a data structure similar

to a vector clock [172, 105], that summarises the local state of the system components related to the

monitored PtDTL formula. Monitors exchange local copies of their knowledge vector by attaching

them to outgoing messages sent by system components and update their local knowledge vector state

in turn with the most recent information received. A formula is evaluated in a step-wise fashion by

cooperating monitors by consulting their local knowledge vector whenever it gets updated until a verdict

is eventually reached. The authors focus on the efficiency of the monitoring set-up and argue that the

monitoring information piggybacked on messages already being passed between system components

does not incur additional overheads. However, this renders the monitoring algorithm incomplete, since

monitors only gain knowledge of the system through the existing communication among its components,

and in cases where these rarely communicate, the little information exchanged may lead to missed

detections. The set-up is also not amenable to scenarios where node or link failure is present, due the to

dependency monitors have on the architecture of the SuS.

Scheffel and Schmitz [203] argue that the two-valued semantics of PtDTL is insufficient to enable

monitors to distinguish between verdicts relating to safety or fulfilment properties. They adopt an

approach similar to Sen et al. [208], but allow correctness properties to be expressed in DTL—an extended

version of PtDTL equipped with the three-valued semantics of LTL3. As in Sen et al. [208], correctness

properties specified over the local state of system components can, in turn, include sub-properties that

reference the state of other remote components through epistemic operators. Monitors disseminate

partial information using the notion of knowledge vectors of Sen et al. [208], employing the same

mechanism that piggybacks monitoring information on asynchronous messages exchanged between

system components, making their algorithm efficient but incomplete.

Minimising communication and memory overhead is also the focus of Mostafa and Bonakdarpour

[180]. In this setting, the SuS consists of distributed asynchronous processes that communicate together

via message-passing primitives over reliable channels. Correctness specifications given in terms of

LTL3 are specified over the global system state: these are synthesised into automaton monitors and

composed with system processes. The monitor algorithm does not assume a common global clock and
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Basin et al. [31] ✓ ✓ · ✓ · ✓ ✓ ✓ ✓ ·

Bonakdarpour et al. [45] ✓ ✓ · ✓ ✓ · · · ✓ ·

Colombo and Falcone [67] ✓ ✓ ✓ · · ✓ ✓ · · ·

Graf et al. [122] ✓ ✓ · ∗ · ✓ ∗ · · ·

Mostafa and Bonakdarpour [180] ✓ ✓ · ✓ · ✓ · · · ·

Scheffel and Schmitz [203] ✓ · · ✓ · ✓ · · · ·

Sen et al. [208] ✓ · · ✓ · ✓ · · · ·

Table D.2. State of the art on distributed monitoring classified by characteristics (∗ denotes both)

partially orders the trace events collected locally by monitors using vector clocks. To contend with the

non-determinism that arises due to this partial ordering, each automaton in the monitor maintains a

number of possible verdicts that are continually updated when new local state information is exchanged

between monitors. This spares monitors from having to consider system states that are not relevant to

the property under consideration. The algorithm progresses by merging similar monitor states to keep

the number of possible verdicts manageable throughout the monitoring process until the final verdict is

eventually issued.

Graf et al. [122] adopt a hybrid verification approach that employs model checking to pre-calculate

the states of a program that enable violations to be reported by a monitor acting alone. Invariants

are specified via knowledge properties [93] over the global system state; these are synthesised into

asynchronous decentralised monitors that communicate with each other to obtain additional information

about the local state of remote components. When the information computed a priori during the model

checking phase determines that monitors cannot reach a verdict in isolation, synchronisation ensues to

enable them to cooperatively conclude whether the invariant is violated. In this manner, monitors may

operate independently and engage in synchronous communication only when necessary, contributing

to lower overheads. The pre-calculation step assumes that components within the system are reliable

and that their number remains fixed throughout the entire execution.

A summary of the discussed works is given in table D.2. The various monitoring approaches use

decentralised monitors to collect and process trace events locally at each component; this tends to

better address the communication overhead that arises in centralised approaches, and at the same

time, eliminates SPOFs. While works such as Sen et al. [210] and Mostafa and Bonakdarpour [180] do

not explicitly focus on failure, their decentralised set-ups may still benefit from a modicum of fault

containment when correctness properties target only specific components.



Acronyms

maxHML
d greatest fixed point fragment of `HML with data.

minHML
d least fixed point fragment of `HML with data.

`HML Hennessy-Milner logic with recursion.

`HML
d `HMLwith data.

AOP aspect-oriented programming.

API application programming interface.

APM application performance monitoring.

AST abstract syntax tree.

BEAM Bogdan’s Erlang Abstract Machine.

BIF built-in function.

CCS calculus of communicating systems.

CPU central processing unit.

CRV competition on runtime verification.

CTL computation tree logic.

CV coefficient of variation.

DAG directed acyclic graph.

DB database.

DTL distributed temporal logic.

EVM Erlang virtual machine.

FIFO first in first out.

HTTP hypertext transfer protocol.
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IO input/output.

IP internet protocol.

JVM Java virtual machine.

LTL linear temporal logic.

LTS labelled transition system.

MPI message passing interface.

MTL metric temporal logic.

OOP object oriented programming.

OS operating system.

OTP open telecom platform.

OTS off-the-shelf.

PD process dictionary.

PID process identifier.

PtDTL past-time distributed temporal logic.

PTS parametric trace slicing.

RE regular expression.

REST representational state transfer.

RV runtime verification.

SMP symmetric multiprocessing.

SPOF single point of failure.

SuS system under scrutiny.

TCP transmission control protocol.

UUID universally unique identifier.
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