
Towards Modular Monitoring for
Concurrent Systems

Duncan Paul Attard

Supervisor: Dr. Adrian Fancalanza

Faculty of ICT

University of Malta

September 2016

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

Faculty of ICT

Declaration

I, the undersigned, declare that the dissertation entitled:

Towards Modular Monitoring for Concurrent Systems

submitted is my work, except where acknowledged and referenced.

Duncan Paul Attard

September 28, 2016

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Adrian Fran-

calanza, for his unwavering guidance, enthusiasm and support offered throughout

the entire duration of this work, as well as for instilling in me a greater appreciation

of computer science. His insightful comments and discussions incited me to widen

my perspective from various angles. I would also like acknowledge that the work

presented in Chapter 3 was developed together with Dr. Adrian Francalanza.

I would also like to thank the academic and non-academic staff members of the

Faculty of ICT who were always supportive and helpful during this past year of

studies within the faculty.

A special thanks goes also to my parents Raymond and Gertrude, and my

siblings, Daphne and Björn for being there in difficult times throughout this year. I

would also like to thank my closest friends, especially Mandy, for their unconditional

support and infinite patience.

Finally, I cannot forget to mention my friends, Annalizz, John and Kevin, who

each in their own way, made this journey fun and unforgettable!

iii

Abstract

Concurrent systems typically consist of multiple components or processes that
are designed with the intention of working together. Commonly, the correctness of
such systems is perceived from a global perspective, and runtime monitors consider
the overall functionality of a system rather than focusing on individual components.
This work studies localisation as an alternative means of runtime monitoring in
concurrent scenarios to mitigate scalability and performance issues that arise when
a global monitoring approach is employed. It centres on the benefits that can be
gained if the task of monitoring component-based systems is approached from a
modular stance. Within this context, the study takes the form of a comparative
analysis that rigorously assesses the benefits of local monitoring, and the ways these
outweigh those of its global counterpart.

The study presents an implementation of a runtime monitoring tool that au-
tomatically synthesises concurrent monitors from formulae specified in mHML, a
monitorable subset of the branching-time logic µHML. The synthesis algorithm
is compositional w.r.t. to the structure of formula, thereby naturally mapping cor-
rectness specifications into concurrent Erlang actors that monitor a running system
with minimal instrumentation efforts.

Through this tool, local and global monitoring are evaluated vis-à-vis a number
of assessment criteria that target the qualitative and quantitative aspects of each
approach. To ensure a thorough and holistic examination of the effectiveness of
both monitoring approaches, two different experiment setups are considered. The
first setup gauges the applicability of local monitoring by studying two forms of
component-based architectures, in order to identify in which case the application
of local monitoring yields the most benefits. In the second setup, local and global
monitoring are used to runtime verify a third-party application, with the intent of
assessing the behaviour of each in a real-world use case.

The results obtained from these evaluations demonstrate that one stands to
gain when local monitoring is employed in component-based scenarios, and that, in
general, it outperforms global monitoring. Furthermore, the results clearly show that
local monitoring can be used to great effect when applied to isolated target system
components. In cases involving components that communicate between themselves,
local monitoring may still yield benefits, though these are harder to interpret and
quantify. The applicability of these results is not limited solely to the host technology
used to conduct the experiments, nor is it bound to the specification formalism
used. Rather, the results should be interpreted from an implementation-agnostic
viewpoint, making them applicable to any concurrent scenario where components
can be delineated into subsystems that can be individually traced.

iv

Contents

1. Introduction 1
1.1 Problem Synopsis and Motivation 3
1.2 Aims and Objectives . 5

1.2.1 Assessment Criteria . 5
1.2.2 Objectives . 6

1.3 Document Outline . 8

2. Background 10
2.1 Runtime Verification . 10

2.1.1 Monitors . 11
2.2 Modelling Reactive Systems . 13
2.3 Specifying Correctness Properties 15

2.3.1 The logic µHML . 15
2.3.2 Monitoring µHML . 17

2.4 Erlang . 20
2.4.1 Tracing . 21

2.5 Conclusion . 23

3. A Tool for the Monitorable Subset of µHML 24
3.1 Monitor Synthesis . 25
3.2 Implementation . 27

3.2.1 Pattern Matching . 28
3.2.2 Asynchronous Monitors . 29
3.2.3 Monitor Compilation . 32

3.3 Conclusion . 35

4. Local Monitoring 36
4.1 An Overview of Local Monitoring 37
4.2 Implementability . 39
4.3 The Applicability of Local Monitoring 42
4.4 A Qualitative Study . 45

4.4.1 Understandability . 45
4.4.2 Maintainability . 50
4.4.3 Expressivity . 53

v

4.4.4 Fault Tolerance . 55
4.5 A Quantitative Study . 55

4.5.1 Data Analysis and Representation 55
4.5.2 Isolated Components . 57
4.5.3 Communicating Components 59
4.5.4 Commentary . 61

4.6 Conclusion . 62

5. Case Study 64
5.1 A Third-Party Application . 65

5.1.1 The Open Telecom Platform 65
5.1.2 The Ranch Architecture . 66

5.2 Monitoring for the Ranch Protocol 68
5.3 A Quantitative Evaluation of Ranch 70

5.3.1 Experiment Setup . 70
5.3.2 Performance Measurements 75

5.4 Conclusion . 82

6. Towards Dynamic Local Monitoring 83
6.1 An Overview of Dynamic Local Monitoring 84
6.2 Implementation Challenges . 85

6.2.1 Trace Event Loss . 86
6.2.2 Trace Event Routing . 87
6.2.3 Routing Table Management 88
6.2.4 Garbage Collection . 89

6.3 A Preliminary Proof of Concept . 90
6.3.1 An Example . 91

6.4 Conclusion . 93

7. Conclusion 95
7.1 Future Work . 98
7.2 Related Work . 99

A. Refining the Monitor Synthesis 106

B. Translation From mHML to Erlang Monitors 110

C. Global Monitoring for the Ranch Protocol 112

D. Using the Tool 114
D.0.1 Creating the Target System 114
D.0.2 Instrumenting the Target System 118
D.0.3 Co-safety Properties . 123
D.0.4 Correct Property Synthesis 125

vi

E. Deliverables 127

References 128

vii

List of Figures

1.1 The classification levels of a generic RV setting. 2
1.2 The possible execution paths for Sys def= (A |B). 4

2.1 Monitor synthesis from a property specification ϕ. 12
2.2 A model for describing reactive systems (adapted from [21]). 14
2.3 The LTSes describing two different servers p and q. 15
2.4 The syntax and semantics of µHML. 16
2.5 The syntax of mHML. 19
2.6 Attaching tracers to processes. 22

3.1 The syntax and dynamics of monitors (adapted and extended from [21]).
. 25

3.2 The monitor synthesis function (adapted and refined from [21]). . . 26
3.3 The recursive unfolding of compositional monitors. 31
3.4 The monitor synthesis process pipeline. 32

4.1 Global and local monitor configurations. 38
4.2 Setting up local monitors for components A and B. 40
4.3 The TIS architecture with isolated back-end components. 43
4.4 The TIS architecture with interacting back-end components. 44
4.5 Performance measurements for the unmonitored system, local and

global monitoring (TIS architecture with isolated back-end compo-
nents). 58

4.6 Performance measurements for the unmonitored system, local and
global monitoring (TIS architecture with interacting back-end com-
ponents). 60

5.1 The Ranch supervision tree with one listener and two acceptors. . . 67
5.2 Performance measurements for the unmonitored system, local and

global monitoring (Ranch with two acceptors). 77
5.3 Performance measurements for the unmonitored system, local and

global monitoring (Ranch with four acceptors). 79
5.4 Performance measurements for the unmonitored system and local

monitoring (Ranch with one hundred acceptors). 81

viii

6.1 The final process configuration of the monitored system after dynamic
local monitoring is applied. 93

A.1 The monitor syntax and dynamics, and the compositional synthesis
function (adapted from [21]). 107

ix

List of Tables

3.1 The monitor constructs and their corresponding Erlang code. 33
3.2 The monitor synthesis function cases and their corresponding com-

piler functions. 34

B.1 The monitor constructs and their corresponding Erlang code. 110
B.2 The monitor synthesis function cases and their corresponding com-

piler functions. 111

x

Conventions

Textual content and illustrations within this manuscript adopt these conventions.

Text

Emphasised text denotes important notions or key concepts;

Italic text denotes variables;

Small Capitals identifies process names;

Sans Serif text refers to existing tools and third-party software artefacts;

Teletype text identifies language keywords or source code snippets;

Bold Sans Serif denotes special operators in mathematical notation;

“Quoted” italic text symbolises textual descriptions of runtime properties.

Illustrations

(process communication arrows) represent uni-directional communication
between processes;

(spawn arrows) denote process instantiation actions;

(trace message flow arrows) denote a pairing between a tracer and the
process it traces, or a pairing between a tracer and its associated monitor;

1 identifies specific numbered steps in a protocol description;

denotes processes or a subsystem composed of processes;

Trc identifies tracer processes;

denotes newly spawned processes or subsystem boundaries;

highlights subjects that merit the reader’s attention.

xi

1. Introduction

Concurrency refers to software systems whose functionality is expressed in terms

of multiple components or processes specifically designed to work simultaneously

with each other [35]. In recent years, concurrent solutions have become increasingly

commonplace and are nowadays preferred over monolithic architectures. This is

owed to the rigidity the latter type of systems exhibit, where attempts at address-

ing scalability concerns usually lead to notoriously complex and often, inadequate

solutions. In contrast, a concurrency-oriented [5] development approach tackles the

scalability problem from a software design perspective, thereby ensuring that such

systems can easily avail themselves of multi-processor and multi-core platforms

which are prevalent today.

The execution of concurrent systems is typically characterised by a high degree

of non-determinism — the upshot of interleaving threads or processes that give rise

to a vast number of possible execution paths, making the verification of these types

of systems an onerous task. Runtime Verification (RV) is a lightweight verification

technique that makes it an appealing choice when it comes to verifying concurrent

systems, because the scalability issues associated with other traditional verification

techniques are entirely circumvented.

The manner with which RV is applied in practice is largely driven by the design

of the system being considered. For example, monolithic architectures usually render

the task of expressing properties on different system components rather cumbersome,

1

Chapter 1. Introduction

Global Local

Single event
tracing

Multiple event
tracing

Global
Monitoring

Local
Monitoring

Specification Level

Monitoring Level

Figure 1.1: The classification levels of a generic RV setting.

whereas modularised setups afford the RV approach a granular view. Instances of

the latter may, in general, be described in terms of the two-dimensional matrix in

Figure 1.1, consisting of two conceptual levels of classification:

Specification Level Focuses on how correctness properties can be expressed in

terms of the system behaviour considered. Global properties span the entire

system, and usually regard multiple variables or execution trace events. Con-

versely, local properties concentrate only on a fraction of the system behaviour

and consider a select subset of components.

Monitoring Level Supports global or local property specifications by defining

what tracing mechanisms are made available by the RV framework. In single

event tracing, trace events are funnelled into a central stream which is then read

and processed by a singleton monitor. In multiple event tracing, independent

monitors can opt to consume portions of the main execution trace concurrently

by subscribing to separate subtraces.

The work presented in this dissertation studies RV through these two classifica-

tion levels. In particular, it explores how modular monitoring can be applied within

the context of concurrent systems, providing the means by which local properties

declared on subparts of the target system can be clearly specified and efficiently

monitored.

2

Chapter 1. Introduction

1.1 Problem Synopsis and Motivation

This work distinguishes between two runtime monitoring approaches, and defines

them according to the classification levels depicted in Figure 1.1:

Global monitoring Determines the correctness of global properties within the

context of a modular (concurrent) system supporting single event traces. Con-

currency requires that global properties account for the possible interleaving

of the execution trace events being considered.

Local monitoring Concentrates on system components, and is defined within the

context of a modular (concurrent) system supporting multiple event tracing.

Properties consider only portions of the global trace (i.e., subtraces) con-

taining events that are directly relevant. As these properties are mutually

independent, the corresponding synthesised monitors function in complete

isolation.

In a concurrent scenario, a global monitoring approach tends to be the cause of

rigidity and scalability complaints, both when initially specifying and later, when

monitoring for correctness properties. Execution interleaving makes global property

specification hard, cumbersome, and the results of such efforts end up in runtime

monitors that are brittle and sensitive even to localised changes in the system. All

of this adds up to unnecessarily complex and inefficient runtime monitors.

Consider the system Sys composed of two simple processes A and B, arranged

in parallel as follows:

Sys def= (A |B) A def= a + e B def= b + e (1.1)

Components A and B execute independently of each other, and can perform a

choice (denoted by +) between actions a and e in case of component A, b and e in

case of component B. Once a choice is made by both A and B, Sys completes its

execution and terminates (denoted by 0). All possible execution paths available to

3

Chapter 1. Introduction

Sys

0 | b + e 0 | b + e a + e | 0 a + e | 0

0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0

a

e b

e

b e b e a e a e

Figure 1.2: The possible execution paths for Sys def= (A |B).

Sys are depicted in Figure 1.2. For instance, the leftmost branch shows that Sys

affords the transition Sys a−→(0 | b + e), and from (0 | b + e), it can either perform

the transitions b−→ or e−→, both of which lead to the terminated system (0 | 0).

Example 1.1.1. The property stating that “neither component A performs action

‘a’, nor component B action ‘b’” can be expressed using the following global safety

Hennessy-Milner Logic (HML) [21] formula:

ϕg = [a]ff ∧ [b]ff ∧ [e] ([a]ff ∧ [b]ff) (1.2)

where [α]ff describes processes that cannot afford action α, i.e., if action α is

matched, then ff flags it as invalid. All possible (two-action) execution traces for

Sys, are matched in the following way. Subformulae [a]ff and [b]ff match all traces

prefixed by actions ‘a’ and ‘b’ (i.e., ‘ab’, ‘ae’, ‘ba’, ‘be’). The interleaving of action ‘e’

is accounted for by subformula [e] ([a]ff ∧ [b]ff), which first matches traces prefixed

by ‘e’ (i.e., ‘ea’ and ‘eb’), and then matches the second action ‘a’ or ‘b’ using

([a]ff ∧ [b]ff). In all instances, a violation is flagged immediately due to ff when

actions ‘a’ or ‘b’ are encountered in any position inside one of the execution traces

for Sys (see Figure 1.2). �

Suppose that now, Sys was amended to include a third concurrent process:

C def= c + e, while the property in Example 1.1.1 is extended to prohibit ‘c’ transi-

tions from the new component C. The global specification ϕg must be updated to

handle the additional interleaving action ‘c’ introduces, resulting in a formula that

4

Chapter 1. Introduction

considers 34 different (three-action) trace combinations. Such a scenario highlights

the fact that as the number of processes (or actions per process) increases, specifying

global properties becomes quickly prohibitive. In view of this, it could prove to be

beneficial if the overall target system correctness is perceived as a collection of local

subproperties, rather than as a single global property.

Example 1.1.2. The same requirement expressed by formula (1.2) can be also

specified in terms of two local HML formulae, one which monitors for action ‘a’

from process A, and one, for action ‘b’ from B:

ϕa = [a]ff ϕb = [b]ff (1.3)

In contrast to the global property ϕg from Example 1.1.1, ϕa and ϕb are much

simpler and clearer to work with. It is also evident that in this case, execution

interleaving ceases to be an issue, because each property needs only to consider the

actions of its own process. Furthermore, as new components are added, existing

properties need not necessarily be refactored: introducing process C, requires only

that formula ϕc = [c]ff be added alongside the ones in (1.3). �

1.2 Aims and Objectives

This dissertation aims to study the benefits that can be reaped if local monitoring

is applied to a purely concurrent, online setting, and crucially, how this compares in

relation to a global monitoring approach. Additionally, the study also concentrates

on how these two types of monitoring strategies can be tackled from an asynchronous

and non-invasive standpoint.

1.2.1 Assessment Criteria

In order to appropriately measure and assess these findings, the five criteria listed

below have been identified. Criteria 1 to 4 shall be evaluated through qualitative

5

Chapter 1. Introduction

argumentation; Criterion 5 will be gauged using quantitative experiments.

1. Understandability: Focuses on the ease with which specification formulae

can be concisely written, and whether expressing them requires the user to

account for additional system functionality or behaviour that is not directly

relevant to the property at hand;

2. Maintainability: Determines if extensions in the specification scripts are

easy to address, and whether these would need to be refactored, even if other

unrelated parts of the system are modified;

3. Expressivity: Investigates if certain specific cases make it possible to express

a larger number of properties, and whether specifying them locally or globally

affects the difficulty with which these can be monitored for at runtime;

4. Fault Tolerance: Establishes whether monitors are resilient to failures that

can occur in one or more system components;

5. Performance: Measures the impact monitors have on the target system’s

memory consumption, CPU utilisation, and responsiveness, and how well these

compare in relation to measurements obtained from an unmonitored version

of the target system.

As this work focuses exclusively on concurrent systems, it proved convenient

to employ a programming language that inherently supports the basic notions

of concurrency. Erlang suitably fulfils this requirement, as it embraces the actor

model [12] which makes it easy and clear to reason about and analyse the interactions

that take place between processes. Furthermore, Erlang conveniently provides a

per-process native tracing functionality that makes it possible to observe systems

at fine levels of granularity.

1.2.2 Objectives

The primary objectives this work sets out to tackle are thus:

6

Chapter 1. Introduction

1. Implementing a prototype tool that supports the specification of safety and

co-safety properties. This provides a sufficiently rich specification logic that

can be used to express negative and positive properties. The tool should serve

as a practical foundational means that enables one to study and compare the

attributes of local and global monitoring;

2. Studying the effectiveness of local monitoring when applied to static systems.

Static systems are characterised by the absence of dynamism, where the size

of the system in terms of its components is fixed and remains constant during

runtime (cf. Objective 4). The investigation should result in the correct design

and implementation of a local monitoring algorithm that can be modularly

applied to components within the system under scrutiny. Furthermore, the

implementation ought to be substantiated by a preliminary evaluation of

local monitoring that explores the manner in which this technique can be

effectively applied to different system configurations. To put the benefits that

are attributed to localisation into a clearer context, local monitoring should

be compared against its global counterpart, based on the assessment criteria

listed in Section 1.2.1;

3. Studying the effects of local monitoring on an industry-level third-party appli-

cation. Aside from revisiting the qualitative results obtained in Objective 2,

the investigation should also serve as means to reassess in particular, the

performance of local monitoring when applied to real-world uses. This inves-

tigation plays a crucial part in reaffirming the conclusions drawn from the

preliminary evaluation conducted in Objective 2;

4. Moving towards a local monitoring algorithm that dynamically monitors indi-

vidual target system components. Local dynamic monitoring can be applied to

systems whose size in terms of their components scales (at runtime) in relation

to the current computational demands. The quintessential examples of such

dynamic systems include web servers and message queuing middleware.

7

Chapter 1. Introduction

1.3 Document Outline

The content in this manuscript is organised into the following chapters:

• Chapter 2 provides the reader with the basic concepts and background

knowledge required to understand the material that is presented in subsequent

chapters. It introduces the main ideas of RV and monitoring, followed by an

overview of mHML, a runtime monitorable subset of the branching-time logic

µHML that can be used to specify correctness properties over programs. This

chapter concludes with a brief discussion of the main Erlang concepts upon

which this work is based;

• An implementation of a prototype tool that automatically synthesises concur-

rent runtime monitors from specifications written in mHML is tackled next

in Chapter 3. Said implementation is based on extensions and refinements of

the results from a previous theoretical work in [21]. The chapter also explores

the engineering aspects of the synthesis procedure to show how concurrent

monitors can be naturally mapped to Erlang actors that monitor a running

system with minimal instrumentation efforts;

• Chapter 4 extends the preliminary prototype tool implementation in Chap-

ter 3 to a local monitoring scenario, where isolated monitor instances can

separately and independently target different system components with fixed

(i.e., static) configurations. The challenges faced when adapting the tool to

a localised setup are discussed at length, followed by an investigation that

identifies ideal scenarios where this type of monitoring can be applied. Further-

more, the effectiveness of local monitoring is qualitatively and quantitatively

evaluated in relation to that of global monitoring w.r.t. to the five assessment

criteria listed in Section 1.2. These evaluations are conducted over two sys-

tems with different component configurations; this helps to determine optimal

scenarios where using either monitoring approach is the most advantageous;

8

Chapter 1. Introduction

• Chapter 5 presents a detailed case study on the use of local and global

monitoring on an industry-level socket acceptor pool for TCP protocols called

Ranch [25]. The basics of Ranch and Erlang OTP are first introduced. These

provide the necessary insight required to identify a particular static subsystem

within Ranch that lends itself well to local monitoring. A suitable experiment

setup design is afterwards discussed, together with a number of precautions

that were taken in order to ensure the least possible amount of measurement

errors within the collected results. The system is subjected to the same quali-

tative and quantitative evaluation as that from Chapter 4, the better to gauge

the effectiveness of local and global monitoring when applied to real-world

third-party applications;

• Chapter 6, builds on the work developed in Chapter 4. It recasts the problem

of (static) local monitoring seen so far as a special case of dynamic monitoring,

and moves towards a holistic approach that can handle both types of local

monitoring. An overview of the general idea of dynamic local monitoring is

presented first. This is followed by an analysis of the implementation issues

that one might need to address when adapting a dynamic local monitoring

algorithm to a concurrent actor-based platform such as Erlang. The chapter

concludes by very briefly discussing a proof-of-concept Erlang implementation

of the dynamic local monitoring algorithm given in this chapter;

• The conclusion in Chapter 7 highlights the achievements obtained in this

work, in accordance to the original project’s aims and objectives, as stated in

Section 1.2. Subsequently, a number of avenues for future work are identified.

Finally, a number of related works in the area are discussed and compared to

the one developed in this dissertation, focusing mainly on the decentralised,

asynchronous and concurrent aspects of this study.

9

2. Background

This chapter presents an overview of the foundational concepts on which the work

developed in this dissertation is based. It should serve as guide that very quickly

takes the reader through the most relevant areas required to understand and appre-

ciate the material that follows this chapter. These topics are covered:

• A short discussion of RV, monitors and the different ways from which their

implementation can be approached;

• Reactive systems and how these can be formally modelled using labelled

transition systems;

• A brief account of formal property specification, followed by a presentation

of the branching-time logic µHML and its monitorable subset mHML;

• An overview of the Erlang language and its native tracing mechanism.

2.1 Runtime Verification

Verification encompasses the approaches employed in showing that a system violates

or satisfies its expected behaviour. Commonly used verification techniques include

model checking, runtime verification and testing. Model checking, an automated,

static verification technique applicable to finite state systems [14], describes the

10

Chapter 2. Background

problem of whether for an abstract model of the system, all its possible executions

satisfy some correctness specification. This contrasts with Runtime Verification

(RV), wherein the analysis of correctness specifications is performed incrementally

on partial runtime executions, up to the current execution point [20, 27]. Due to this

lightweight approach to verification, RV can be employed in complex settings (e.g.

concurrent systems), since the analysis is conducted solely on the execution path

taken by the system at runtime. Static verification techniques, fail to scale in these

kinds of scenarios, because the size of the system state space grows exponentially

w.r.t. the number of state variables [15]. Despite its advantages, RV has limited

expressivity and cannot be used to verify arbitrary specifications such as (general)

liveness properties [28].

When a system is run, it generates a (possibly infinite) sequence of events, known

as a trace. These events are the result of internal or external system behaviours,

such as message exchanges between processes, function invocations, and the like. An

execution, i.e., a finite prefix of an infinite trace, is consumed by a software device

known as a monitor which checks whether the execution satisfies some correctness

property specification, yielding a verdict accordingly. Verdicts denote monitoring

outcomes, and are assigned values taken from some truth-domain [20, 27]. For

instance, rudimentary approaches can adopt a boolean domain (e.g. {false, true})

to denote property violations and satisfactions, while others such as [8, 21] may

employ a three-valued system to represent also inconclusive verdicts.

2.1.1 Monitors

In RV, a monitor for some correctness property is typically synthesised automatically

from high-level specifications that finitely describe these properties, using formal

logics [8, 9, 21] or other formalisms such as regular expressions [22] or automata [7,

17, 19, 34]. This process, depicted in Figure 2.1, yields an instrumented version

of the original system, together with a monitor which reads and evaluates the

execution trace sent to it by the tracer. While the tracer mechanism may need to be

11

Chapter 2. Background

System S and specification ϕ

a Synthesis
by RV tool

Tr
cMonϕ

System S ′

consumes

(a) Tracer and monitor instrumented
into the system.

System S and specification ϕ

a Synthesis
by RV tool

Tr
c Monϕ

System S ′

consumes

(b) Tracer instrumented into the system,
with monitor laying outside.

Figure 2.1: Monitor synthesis from a property specification ϕ.

instrumented into the system in order to elicit trace events it sends to the monitor,

the latter can live both within [19, 29, 34] (Figure 2.1a) and without [6, 17, 23]

(Figure 2.1b) the monitored system. A monitor that is integrated into the system

shares its computational resources and induces performance overheads, whereas a

monitor living outside the system can use its own computational resources to limit

the overall performance impact. Internal system monitors incur no communication

cost, contrary to externalised monitors, although the latter make it possible to

distribute monitors if needed.

Monitoring Approaches

RV distinguishes between two kinds of monitoring approaches that are classified

according to the timeliness with which execution traces are processed1. Online

monitoring actively processes events from the trace incrementally, and yields its

verdicts while the system is running; contrarily, offline monitoring processes pre-

recorded traces, typically after the system has finished executing [27, 34]. Online

monitors work with the monitored system in one of two ways. In online synchronous

monitoring, system and monitor execute in lock-step, i.e., the system is paused until

1It is worth mentioning that some literature differs in its definition of online and offline moni-
toring, and treats online monitoring as synchronous or active monitoring, and offline monitoring
as asynchronous or passive monitoring [8, 22, 27]. This view is not adopted in this work, however.

12

Chapter 2. Background

an acknowledgement is received back from the monitor in response to a trace event

sent earlier (e.g. the work in [10, 19]). In online asynchronous monitoring, trace

events generated by the system are buffered and processed by the monitor eventually,

thereby decoupling the two (e.g. the work in [6, 17, 23]). Synchronous monitoring

enables the timely detection of property violations, as opposed to the asynchronous

flavour, although the latter usually offers better overall performance as it does not

slow the system while monitoring. Online monitoring makes it also possible for the

monitor to react in response to property detections by administering actions to

the system if required. The efficiency of online monitoring is paramount, as this

can adversely affect the monitored system or even alter its functional behaviour,

e.g. slowness due to inefficient monitors might cause the system to violate time-

dependent properties that would not have been violated in the unmonitored system.

A monitoring tool that induces considerable levels of performance overheads is

typically infeasible to use in practical scenarios.

2.2 Modelling Reactive Systems

Reactive systems can be described as a collection of one or more processes that

respond to external events or stimuli. Rather than terminating upon producing a

final output, these systems are characterised by continuous communication with

their environment, and are often perceived as black box entities whose state is

gauged only through the observation of visible (external) actions.

Labelled Transition Systems (LTSes) can be used to model reactive systems as

process execution graphs [2]. A LTS is comprised of the triple 〈Sys, (Act∪{τ}),−→〉

consisting of a set of states or processes Sys, a set of actions Act together with

the distinguished silent action τ , where τ /∈ Act and µ ∈ Act ∪ {τ}, and finally,

a ternary transition relation−→⊆ (Sys× (Act ∪ {τ})× Sys). The existence of a

set of visible actions α, β ∈ Act, and a set of recursion variables x, y, z ∈ Vars is

assumed.

13

Chapter 2. Background

Syntax

p, q, r ∈ Sys ::= nil (inaction) | α.p (prefixing) | p + q (choice)
| recx.p (recursion) | x (recursive variable)

Dynamic behaviour

Act
α.p

α−→p
SelL p

µ−→p′

p + q
µ−→p′

Rec
recx.p τ−→p[rec x.p/x]

Figure 2.2: A model for describing reactive systems (adapted from [21]).

Process states in the LTS can be expressed using a fragment of Milner’s Calculus

of Communication Systems (CCS) [30] syntax shown in Figure 2.2. A process may

be inactive, denoted by nil, prefixed by α where the process participates in action

α and behaves as p thereafter, or perform an external choice and depending on its

interaction, reduces itself to either p′ or q′ (the symmetric rule SelR is omitted).

The term recx.p enables the recursive definition of processes, and acts as a binder

for the variable x in p. All recursive variables are assumed to be guarded.

The notation p µ−→p′ is used in lieu of (p, µ, p′), while p µX−→ is written iff p µ−→p′

for no process p′. In addition, p=⇒p′ denotes p(τ−→)∗p′, whereas p µ=⇒p′, is written

in place of p =⇒ · µ−→ · =⇒ p′; p′ is termed the µ-derivative of p [31]. Also,

t, u ∈ Act∗ range over sequences of visible actions, where p α1=⇒ . . .
αn=⇒ pn is

written as p t=⇒pn, t being the sequence of actions α1, . . . , αn (see [2, 30]).

Example 2.2.1. A simple server which receives a request and sends a response

back to the client, or terminates once its request limit count is reached, can be

modelled using the CCS process p.

p = recx.(req.resp.x+ lim.nil) q = recx.req.(resp.x+ resp.resp.x)

A second server that non-deterministically sends duplicate responses to the client

is modelled by the process q (see Figure 2.3). �

14

Chapter 2. Background

p p′′p′

req

resp

lim

(a)

q q′ q′′

req

resp

req

resp

(b)

Figure 2.3: The LTSes describing two different servers p and q.

2.3 Specifying Correctness Properties

Correctness properties define the behaviour to which the executing system should

adhere. (Branching-time) properties conceptually represent sets of trees that corre-

spond to the behaviour processes are allowed to exhibit. By reading events incre-

mentally from the trace, a monitor determines whether the list of events read so far

constitute a path in the tree described by the property, or otherwise; paths in the

tree denote property satisfactions, whereas path not in the tree denote violations.

This process can be perceived as one that checks whether the prefix of a (possibly

infinite) trace constitutes an existing or non-existing path in the property tree.

Safety properties, identified by a prefix that constitutes a non-existing path in the

tree, stipulate that bad things do not happen, whereas dually, co-safety properties,

identified by a prefix that constitutes an existing path in the tree, demand that

good things do happen eventually [4, 8, 26].

2.3.1 The logic µHML

µHML is a branching-time logic that can be used to specify correctness properties

on the execution graphs of processes [1, 2]. It assumes a countable set of logical

variables X, Y ∈ LVar, thereby allowing formulae to recursively express least and

largest fixpoints using minX.ϕ and maxX.ϕ respectively. These constructs in turn

bind free instances of the variable X in ϕ, where the notions of open and closed

formulae, as well as equality up to α-conversion apply. In addition to the standard

15

Chapter 2. Background

Syntax

ϕ, φ ∈ µHML ::= ff (falsity) | tt (truth)
| ϕ ∧ φ (concjuntion) | ϕ ∨ φ (disjunction)
| [α]ϕ (necessity) | 〈α〉ϕ (possibility)
| maxX.ϕ (max. fixpoint) | minX.ϕ (min. fixpoint)
| X (recursive variable)

Semantics

Jff, ρK def= ∅ Jtt, ρK def= Sys

Jϕ ∧ φ, ρK def= Jϕ, ρK ∩ Jφ, ρK Jϕ ∨ φ, ρK def= Jϕ, ρK ∪ Jφ, ρK

J[α]ϕ, ρK def=
{
p | ∀p′.p α=⇒p′ implies p′ ∈ Jϕ, ρK

}
J〈α〉ϕ, ρK def=

{
p | ∃p′.p α=⇒p′ and p′ ∈ Jϕ, ρK

}
JmaxX.ϕ, ρK def=

⋃
{S | S ⊆ Jϕ, ρ[X 7→ S]K} JminX.ϕ, ρK def=

⋂
{S | Jϕ, ρ[X 7→ S]K ⊆ S}

JX, ρK def= ρ(X)

Figure 2.4: The syntax and semantics of µHML.

constructs for truth, falsity, conjunction and disjunction, the syntax in Figure 2.4

includes the necessity and possibility modalities.

The semantics of the logic is defined in terms of the function mapping µHML

formulae ϕ to the set of LTS states S ⊆ Sys satisfying them. Figure 2.4 defines

the semantics for both open and closed formulae, and uses a map ρ ∈ LVar ⇀ 2Sys

from variables to sets of processes, thereby permitting an inductive definition on

the structure of the formula ϕ. The formula tt is satisfied by all processes, while

ff satisfied by none; conjunctions and disjunctions bear the standard set-theoretic

meaning of intersection and union. Possibility formulae 〈α〉ϕ refer to processes that

ought to have at least one of their α-derivates satisfy ϕ, whereas necessity [α]ϕ

formulae describe processes that require all (possibly none) of their α-derivates to

satisfy ϕ.

The recursive formulae minX.ϕ and maxX.ϕ are satisfied by the least and

largest set of processes satisfying ϕ [37]. Intuitively, minimal fixpoints refer to

solutions where formulae are assumed to hold false unless proven true, and dually,

maximal fixpoints are associated with solutions where formulae are assumed to

hold true unless proven false. The semantics of recursive variables X w.r.t. an

16

Chapter 2. Background

environment instance ρ is given by the mapping of X in ρ, i.e., the set of processes

associated with X. Closed formulae (i.e., formulae containing no free variables)

are interpreted independently of the environment ρ, and the shorthand JϕK is used

to denote Jϕ, ρK, i.e., the set of processes in Sys that satisfy ϕ. In view of this, a

process p satisfies some closed formula ϕ whenever p ∈ JϕK, and conversely, violates

ϕ if p /∈ JϕK.

Example 2.3.1. The µHML formula 〈α〉 tt describes processes that afford action

α, while [α]ff, processes that do not afford action α.

ϕ1 = maxX.
(
[req] ([resp]X ∧ [resp] [resp]ff)

)
ϕ2 = minX.(〈req〉 〈resp〉X ∨ 〈lim〉 tt)

The safety formula ϕ1 denotes a property describing processes that cannot issue

duplicate responses in answer to client requests; process q from Example 2.2.1

violates ϕ1 via the trace (req.resp)+.resp. The co-safety formula ϕ2 on the other

hand, requires that processes, after a number (possibly zero) of request and response

interactions, reach a service limit; process p in Example 2.2.1 satisfies ϕ2 through

the trace (req.resp)∗.lim. �

2.3.2 Monitoring µHML

Section 2.1 established that RV monitors analyse single execution traces, whereas

other techniques, such as model checking are afforded a view of the entire program

execution graph. Despite this restricted view of the system, RV can be still effectively

applied in cases where correctness properties describe individual executions [1, 23],

because a single witness execution trace suffices to determine (at runtime) whether

the property requirements have been met (see [21] for more details).

Intuitively, formulae of the form 〈α〉ϕ state that it is possible for some process

to perform action α and thereby, satisfy property ϕ. Given this requirement, finding

one positive witness execution trace is all that is needed to conclude whether a

17

Chapter 2. Background

satisfaction is possible. Dually, formulae of the form [α]ϕ state that all α-actions

performed by some process will satisfy property ϕ. To detect a violation of this

requirement, finding one negative witness execution trace is all that is needed to

show that property ϕ is infringed.

Example 2.3.2. The simple co-safety formula ϕ3 below describes the possibility

of “a process affording a lim-action” :

ϕ3 = 〈lim〉 tt

Process p in Figure 2.3a, can, amongst others, produce the following two execution

traces, chosen for elucidative purposes:

t1 = lim.nil t2 = rec.resp

The first trace t1 clearly satisfies formula ϕ3, whereas when looking at the second

trace t2, one cannot determine whether ϕ3 is actually satisfied, simply because the

trace does not contain enough information to allow the monitor to make such a

judgement. Runtime monitors may choose to label the latter monitoring outcome

as being inconclusive. �

Single trace access does however limit the applicability of RV in cases involving

correctness properties describing complete or branching executions. Consequently,

not all properties turn out to be runtime monitorable, as in these cases, monitors

cannot yield a verdict at runtime based on the observation of a single execution

trace.

18

Chapter 2. Background

Monitorable Logic Syntax

ψ ∈ mHML def= sHML ∪ cHML where:

θ, ϑ ∈ sHML ::= tt | ff | θ ∧ ϑ | [α] θ | maxX.θ | X

π,$ ∈ cHML ::= tt | ff | π ∨$ | 〈α〉π | minX.π | X

Figure 2.5: The syntax of mHML.

Example 2.3.3. The formula ϕ4 states the requirement that “whenever a req-

action is observed, at least one resp-action follows” :

ϕ4 = [req] 〈resp〉 tt

Interpreting formula ϕ4 over the LTS for process q from Figure 2.3b immediately

establishes that ϕ4 holds. Such a fact cannot be however gleaned by investigating

the execution traces for process q individually, as done in Example 2.3.2, because

no single trace will contain enough evidence to enable the monitor to come to a

decisive verdict at runtime. This stems from the fact that ϕ4 talks about multiple

execution paths, as opposed to ϕ3, that considers just one execution path. Since the

monitor’s visibility is limited to a single runtime execution, properties describing

multiple executions are in general, not monitorable, and in these cases, a verdict can

be given only if the process execution graph is considered in its entirety (see [21]

for details). �

The work in [21] explores the monitorability limits of µHML, identifies a syn-

tactic logical subset called mHML, and shows it to be monitorable and maximally-

expressive w.r.t. the constraints of runtime monitoring. Its syntax, given in Fig-

ure 2.5, consists of two syntactic classes, Safety HML (sHML) describing invariant

properties, and Co-Safety HML (cHML), describing properties that hold eventu-

ally after a finite number of events. Formulae ϕ1 and ϕ2 from Example 2.3.1 are

instances of sHML and cHML specifications respectively.

19

Chapter 2. Background

2.4 Erlang

Erlang is a general-purpose, concurrent, functional programming language that

facilitates the development of fault-tolerant and distributed systems [5, 12, 24].

It is also considered a soft real-time platform thanks to its lightweight process

management, per-process garbage collection and pre-emptive scheduling algorithm.

Erlang adopts the actor model for concurrency, which it uses as the primary

means to structure applications. An actor is a concurrency primitive that represents

a processing entity sharing no mutable memory with other actors. It communicates

with its environment exclusively via messages, and changes its internal state based

on messages received from other actors. The actor model adopts the philosophy that

everything is an actor, and encourages finely-grained computational models, which

in turn, exhibit high degrees of robustness and distribution [12]. Highly granular

designs are made possible since Erlang offers inherent language-level support for

working with processes, and tasks like process creation and scheduling are managed

at the Virtual Machine (VM)-level, making process handling very efficient.

Interprocess communication in Erlang works via asynchronous message passing.

Each process owns a message queue, known as a mailbox, to which messages from

other processes can be sent in a non-blocking, fire-and-forget fashion. The recipient

process may then at any time selectively consume messages from its mailbox us-

ing Erlang’s receive construct. Messages are comprised of any Erlang data type,

including integers, floats, atoms, functions, binaries, etc..

To manage process failures, Erlang supports a linking mechanism that makes it

possible to associate processes together. When a failure in some process or group of

processes occurs, linked processes are immediately notified, and depending on how

these notifications are handled, processes can be restarted, killed or ignored. This

process linking scheme not only makes Erlang’s fault handling very robust, but also

constitutes the basis over which highly resilient applications are built.

Additionally, Erlang provides a framework of software components (known as

OTP), that exposes common programming patterns and utility libraries, making

20

Chapter 2. Background

it possible to develop concurrent applications in an easy and standardised manner.

More details on this topic can be found in Section 5.1.1.

2.4.1 Tracing

Tracing is an Erlang VM mechanism that offers a powerful and flexible means

of process observation, making it possible to understand how the system behaves

without modifying its source code or instrumenting it special ways (e.g. unlike other

approaches such as Aspect Oriented Programming (AOP) techniques) [5, 12]. Its

flexibility stems from the fact that it can be selectively applied on specific processes

as required, thereby fine tuning the tracing effort to the desired level of granularity.

Since Erlang tracing does not rely on instrumentation, it can be switched on and

off while the system is executing [24].

Tracing is a low-level platform API exposed through two Built-In Functions

(BIFs). The erlang:trace/32 BIF defines the set of system processes to be traced,

by either specifying a Process Identifier (PID) to target one specific process directly,

or using other flags such as all and new to target all or newly spawned processes

respectively. It also designates a special tracer process to which all trace messages

are directed. Conventionally, invoking the erlang:trace/3 BIF sets the caller as the

tracer process, although this behaviour can be changed if required. Tracers cannot

trace themselves, and only one tracer is permitted per process. Trace messages take

the form of a tagged tuple {trace, ...}, and like any other message, are deposited

asynchronously inside the tracer’s mailbox from where these may be later retrieved

using receive. Tracing options available to erlang:trace/3 make it possible to

specify the trace events of interest, e.g. function calls, message sends and receives,

garbage collection triggers, process spawn events, etc..

In addition to the aforementioned tracing options, the erlang:trace/3 BIF

also supports a special set_on_spawn flag that allows newly spawned processes to

2Erlang functions are grouped into modules. Each function within the module need not be
uniquely named, as long as its number of parameters (also known as the arity) is different from oth-
ers with the same name. Functions can be identified using the triple: mod_name:fun_name/arity.

21

Chapter 2. Background

p

q r

Trcp

spawns sp
aw

ns

extracts

extracts ex
tr

ac
ts

(a) Trace messages from all of p, q and
r are directed towards the same global
tracer Trcp.

p

q r

Trcp

Trcr

spawns sp
aw

ns

extracts

extracts

extracts

(b) The trace message flow is split and
directed to tracer Trcp for processes p
and q, and to Trcr for process r.

Figure 2.6: Attaching tracers to processes.

inherit their parent process’ trace flags. It also directs trace events originating due to

these child processes to the same tracer attached to the parent process. Figure 2.6a

shows the process-tracer configuration that would have been attained if the traced

parent process p spawned its children q and r after the set_on_spawn flag has been

defined for tracer Trcp. As illustrated, all trace messages produced on account of

processes p, q and r are directed towards the same tracer Trcp for process p. If one

requires to direct a portion of this global trace to a separate tracer, say, for process

r, this needs to be unsubscribed from tracer Trcp first, and then, resubscribed to

another tracer Trcr intentionally created to handle process r (Figure 2.6b). This

subscription-resubscription procedure is required since only one tracer is permitted

per process.

While the erlang:trace/3 BIF specifies what processes should be traced, the

erlang:trace_pattern/2 BIF defines how this is to be achieved. It can be thought

of as a filtering mechanism that determines which trace messages are sent to the

tracer process and which are withheld. For instance, while erlang:trace/3 can

be used to specify that some process needs to be traced for function call events,

erlang:trace_pattern/2 can be applied as a refinement to pinpoint one particular

function call with a certain combination of argument values.

22

Chapter 2. Background

Tracing serves as the basis for a number of utilities including Erlang’s text-

based tracing facility dbg, and trace tool builder ttb [5]. A number of RV tools

such as those in [17, 23] and the one developed in Chapter 3 also employ tracing to

achieve lightweight and asynchronous trace event extraction. These tackle tracing

from a low-level aspect, and therefore use the two BIFs discussed above instead of

relying on some high level API such as dbg. The reader should note that the tracing

mechanism explained in this section differs from the one discussed in Section 2.1.1

in that it does not require instrumentation.

2.5 Conclusion

This chapter provided the necessary background required to understand the under-

lying concepts featured in this work. It introduced the basic notions of RV, together

with monitors and the different approaches that can be adopted whilst implementing

them. Reactive systems were tackled next, together with a calculus that makes it

possible to model them in a formal manner; this served as a foundation upon which

the logic µHML and its monitorable subset mHML could be adequately discussed.

The topic of Erlang and its native tracing functionality were finally presented with

the intent of giving fair insight into how the process of trace event extraction can

be achieved without instrumenting the monitored system. As shall be seen in the

coming chapters, Erlang’s language-level tracing facility provides the underpinning

mechanism that enables the development of a global monitoring tool discussed in

Chapter 3, and its adaptation to a local scenario in Chapters 4 and 6.

23

3. A Tool for the Monitorable

Subset of µHML∗

In the preceding chapter, verification was introduced as a technique that can be

used to determine whether a system adheres to its expected specified behaviour.

Particular focus was given on how this could be achieved at runtime using moni-

tors that continually observe the system as it executes. This chapter discusses the

implementation of a RV tool that analyses the correctness of concurrent programs

developed in Erlang. It builds on the results in [21], and specifies a synthesis proce-

dure that generates correct monitor descriptions from formulae written in mHML.

The tool investigates the implementability of this synthesis procedure, instantiat-

ing it to generate executable monitors for a specific general-purpose concurrent

programming language. This chapter covers the following:

• Extensions to the monitor syntax and semantics in [21], together with a

refinement of the synthesis that supports a practical implementation of a

mechanism that produces concurrent runtime monitors;

• A discussion on the challenges faced when adapting the refined synthesis

function for implementing a tool that targets the Erlang platform.

∗The material presented in this chapter has been published in [6].

24

Chapter 3. A Tool for the Monitorable Subset of µHML

3.1 Monitor Synthesis

The behaviour of monitors, like that of processes, can be described using a process

calculus (see Section 2.2), as shown in Figure 3.1, where α.m α−→ m denotes a

monitor in state α.m analysing event α and transitioning to state m. Verdicts v,

persistent states that do not change when events are analysed, model the irrevoca-

bility of monitor verdicts, as per the rule mVer. Recursion is permitted by virtue

of mRec. Action τ represents internal transitions, whereas µ ranges over α and τ .

The monitor semantics in Figure 3.1 prohibit the use of the choice construct

(see Example 2.2.1), as this allows monitors to behave non-deterministically given

an event µ (see Appendix A for details). This problem stems from a limitation

in the choice construct semantics as used in [21], m + n, which forces a selection

between submonitor m or n upon the receipt of an event, depending on whether

m
µ−→m′ or n µ−→ n′. Said shortcoming is addressed by replacing external choice

constructs with a parallel monitor composition construct, m × n that allows both

submonitors to process the event without excluding one another.

The semantics of this combinator, also given in Figure 3.1, is defined by the bot-

Syntax

m,n ∈Mon ::= v | α.m | m × n | recx.m | x

v, u ∈ Verd ::= no | yes | end

Dynamic behaviour

mAct
α.m

α−→m
mRec

recx.m τ−→m[rec x.m/x]
mVer

v
α−→v

mPar m
α−→m′ n

α−→n′

m × n
α−→m′ × n′

mParL m
α−→m′ n

αX−→ n
τX−→

m × n
α−→m′

mParSR n
τ−→n′

m × n
τ−→m × n′

mParVL
v × n

τ−→v

Figure 3.1: The syntax and dynamics of monitors (adapted and extended from [21]).

25

Chapter 3. A Tool for the Monitorable Subset of µHML

tom four rules (the symmetric cases mParR, mParSL and mParVR are omitted).

Rule mPar states that both monitors proceed in lockstep if they can process the

same action. The next rule mParL states that if only one monitor can process the

action and the other is stuck (i.e., it can neither analyse action µ, nor transition

internally using τ), then the able monitor transitions while terminating the stuck

monitor; otherwise, the monitor is allowed to transition silently by mParSR. Lastly,

rule mParVL terminates parallel monitors once a verdict is reached.

The synthesis function J−K, that maps mHML formulae to monitors is given in

Figure 3.2. It constitutes a refinement upon the original function from [21] in that

it accommodates the parallel monitor composition construct × (see Appendix A for

details). This instantiation follows closely the procedure described in [21], thereby

giving high assurances that the generated executable monitors are indeed correct.

Although the function covers both sHML and cHML, the syntactic constraints of

mHML mean that synthesis for a formula ψ uses at most the first row (i.e., the

logical constructs common to sHML and cHML) and then, either the first column

(in the case of sHML) or the second column (in case of cHML). It is worth noting

that the monitor synthesis function is compositional w.r.t. the structure of the

formula, e.g. the monitor for ψ1 ∧ ψ2 is defined in terms of the submonitors for

subformulae ψ1 and ψ2. One should also highlight the fact that conditional cases

used in the synthesis of necessity and possibility formulae, conjunctions, disjunctions,

JffK def= no JttK def= yes JXK def= x

J[α]ψK def=
{
α.JψK if JψK 6= yes
yes otherwise J〈α〉ψK def=

{
α.JψK if JψK 6= no
no otherwise

Jψ1 ∧ ψ2K
def=

 Jψ1K if Jψ2K = yes
Jψ2K if Jψ1K = yes
Jψ1K × Jψ2K otherwise

Jψ1 ∨ ψ2K
def=

 Jψ1K if Jψ2K = no
Jψ2K if Jψ1K = no
Jψ1K × Jψ2K otherwise

JmaxX.ψK def=
{

recx.JψK if JψK 6= yes
yes otherwise JminX.ψK def=

{
recx.JψK if JψK 6= no
no otherwise

Figure 3.2: The monitor synthesis function (adapted and refined from [21]).

26

Chapter 3. A Tool for the Monitorable Subset of µHML

and maximal and minimal fixpoints are necessary to handle logically equivalent

formulae and generate correct monitors (see [21] for details).

Example 3.1.1. The sHML formula ϕ1 from Example 2.3.1 (restated below)

describes the property stating that “after any sequence of requests and responses,

a request is never followed by two consecutive responses”. The synthesis function in

Figure 3.2 translates ϕ1 to the monitor process m1.

ϕ1 = maxX.
(
[req] ([resp]X ∧ [resp] [resp]ff)

)
m1 = recx.

(
req.(resp.x × resp.resp.no)

)

The cHML formula ϕ5 describes a property where “after a (finite) sequence of

requests and responses, the system reaches a service limit lim”. The subformula

minY.ff ∨ 〈lim〉ff is semantically equivalent to ff; accordingly the side conditions

in Figure 3.2 take this into consideration when synthesising monitor m5.

ϕ5 = minX.
(
〈req〉 〈resp〉X ∨ 〈lim〉 tt ∨ (minY.ff ∨ 〈lim〉ff)

)
m5 = recx.(req.resp.x × lim.yes)

�

The reader’s attention should be drawn to the fact that while the synthesis

employs both acceptance and rejection verdicts, it generates uni-verdict monitors

that only produce acceptances or rejections, never both; [21] shows that this is

essential for monitor correctness.

3.2 Implementation

The RV tool implemented in this work analyses the correctness of concurrent pro-

grams developed in Erlang. It exploits the compositional structure of the synthesis

shown in Figure 3.2, so as to enable it to produce concurrent monitors wherein

(sub)monitors autonomously analyse individual parts of the global specification

27

Chapter 3. A Tool for the Monitorable Subset of µHML

formula while still guaranteeing the correctness of the overall monitoring process.

The discussion that follows shows how these concurrent components can be natu-

rally mapped to Erlang actors [5, 12] that monitor a running system with minimal

instrumentation efforts.

3.2.1 Pattern Matching

Actions, in the form of Erlang trace events, consist of two types: (i) outputs i ! d

and inputs i ? d, where i corresponds to actor PIDs , and d denotes the data payload

associated with the action in the form of Erlang data values (e.g. PID, lists, tuples,

atoms, etc.), and (ii) termination events denoted by i stp r that occur on account of

some process i terminating with reason r (e.g. killed, normal, etc.). Specifications,

defined as instantiations of mHML terms, make use of action patterns which possess

the same structure as that of the aforementioned actions, but may also employ

variables (alphanumeric identifiers starting with an upper-case letter) in place of

values; these are then bound to values when pattern-matched to actions at runtime.

Example 3.2.1. A simple client-server setup consists of a successor server Srv that

adds 1 to any numeric payload it receives from clients Clt. One safety property that

ensures that clients do not receive the same value Num sent by them to the server,

can be expressed using the following sHML formula:

ϕ6 = [Srv ? {req,Clt,Num}] [Clt ! {resp,Num}]ff

where Srv, Clt and Num correspond to Erlang variables that bind at runtime. The

formula matches trace executions where the server receives a request with payload

Num from some client, and replies with the same value ofNum. For instance, an input

trace event that binds Srv to PID <9.0.3>,Clt to PID <1.1.6> andNum to 19 yields

the runtime binding [<9.0.3> ? {req, <1.1.6>, 19}] [<1.1.6> ! {resp, 19}]ff

that will match a subsequent output trace event only if the client with PID <1.1.6>

receives a value of 19 in its response payload. �

28

Chapter 3. A Tool for the Monitorable Subset of µHML

Action patterns require the synthesis of a slightly more general form of monitors

(i.e., from the ones in Figure 3.1) with the following behaviour: if a pattern e

matches a trace event action α, thereby binding a variable list to values from α

(denoted by σ), the monitor evolves to the continuationm, substituting the variables

in m for the values bound by pattern e (denoted by mσ); otherwise it transitions

to the terminated process end.

match(e, α) = σ

e.m
α−→mσ

match(e, α) = ⊥
e.m

α−→end

Pattern matching is advantageous because it makes it possible to specify dy-

namic properties that reason on data values that can only be known at runtime.

There might be cases where the subject process i must be exclusively targeted. For

instance, the safety property in Example 3.2.1 is allowed to bind the variable Srv

to values obtained from any trace event that can be successfully pattern-matched

to [Srv ? {req,Clt,Num}] . Preceding the process variable i with the pre-binding

operator @ (e.g. @Srv) instructs the monitor to bind i to its runtime PID before any

events from the trace are processed; this permits trace matching to be performed

against pre-populated data values that are fixed throughout the monitoring process.

For this facility to be applicable however, processes must be registered with Er-

lang’s process registry (i.e., be named processes) in order to make it possible for

the monitor to dynamically infer PIDs at runtime based on process names.

3.2.2 Asynchronous Monitors

mHML formulae are parsed and synthesised into Erlang code, following closely the

synthesis function discussed in Section 3.1. In particular, the inherent concurrency

features offered by Erlang, together with the modular structure of the synthesis

are exploited so as to translate submonitors into independent concurrent actors

that execute in parallel. An important deviation from the semantics of parallel

composition specified in Section 3.1 is that actors execute asynchronously to one

29

Chapter 3. A Tool for the Monitorable Subset of µHML

another. For instance, one submonitor may be analysing the second action event,

whereas another may forge ahead to a stage where it is analysing the fourth event. In

order to ensure that submonitors have access to the same trace events, the (parent)

monitor to which the submonitors are attached forks (i.e., replicates and forwards)

individual trace events to its children. The moment a verdict is reached by any

submonitor actor, all others are terminated, and said verdict is used to declare

the final monitoring outcome. This alternative semantics still corresponds to the

one given in Section 3.1 for three main reasons: (i) monitors are uni-verdict, and

there is no risk that one verdict is reached before another, thereby invalidating

or contradicting it; (ii) processing is local to each submonitor and independent of

the processing carried out by other submonitors; (iii) verdicts are irrevocable and

monitors can terminate once an outcome is reached, safe in the knowledge that

verdicts, once announced, cannot change.

Monitor recursion unfolding, similar to the work in [23], constitutes another

minor departure from the semantics in Section 3.1, as the implementation uses a

process environment that maps recursion variables to monitor terms. Erlang code for

monitor recx.m is evaluated by running the code corresponding to the (potentially

open) term m (where x is free in m) in an environment with the map x 7→ m.

Example 3.2.2. A monitor resulting from the synthesis of formula ϕ6 is capable

of observing a single client-server interaction before it terminates. To be able to

handle continuous monitoring, ϕ6 can be reformulated into the following recursive

(sHML) formula:

ϕ7 = maxX.([Srv ? {req,Clt,Num}] [Clt ! {resp,Num}]ff∧

[Srv ? {req,Clt,Num}] [Clt ! {resp, Succ}]X)

The concurrent compositional monitor resulting from ϕ7 is shown in Figure 3.3a.

It consists of three processes: the “conjunction monitor” (corresponding to ∧),

and its two submonitor actors, each of which monitors independently for subfor-

30

Chapter 3. A Tool for the Monitorable Subset of µHML

mulae [Srv ? {req,Clt,Num}] [Clt ! {resp,Num}]ff (i.e., the verdict branch)

and [Srv ? {req,Clt,Num}] [Clt ! {resp, Succ}]X (i.e., the recursive branch) re-

spectively by observing trace events αi forked by their parent. The verdict branch

incrementally matches events that lead to a violation (resp. satisfaction); the recur-

sive branch matches non-violation (resp. non-satisfaction) events that permit the

monitor structure to unfold lazily.

Unfolding works by virtue of the guarded recursion variable X acting as a

placeholder for the monitor it maps to in the process environment. When the

recursive variable is evaluated, the monitor unfolds and spawns a new copy of itself:

this consists of a submonitor arrangement that is linked to its parent for error

∧

req req

resp resp

ff X 7→ ϕ7

Mon[req] [resp] ff1
Mon[req] [resp]X1

αi αi

(a) The monitor tree prior to unfolding.

∧

req req

resp resp

ff ∧

req req

resp resp

ff X 7→ ϕ7

Mon[req] [resp] ff2
Mon[req] [resp]X2

αi

αi αi

(b) The monitor tree after the first recur-
sive unfolding takes place.

Figure 3.3: The recursive unfolding of compositional monitors.

31

Chapter 3. A Tool for the Monitorable Subset of µHML

handling purposes (see process linking in Section 2.4). This unfolding procedure is

illustrated in Figure 3.3b, where the left greyed-out branch denotes a terminated

(top-level) submonitor that did not match its expected execution trace pattern. The

reader should note that recursion steadily diminishes the monitor’s efficiency every

time an unfolding takes place, due to the number of extra processes created for

each newly cloned monitor instance. �

3.2.3 Monitor Compilation

Figure 3.4 outlines the compilation steps required to transform a formula script

file (script.hml) into a corresponding Erlang source code monitor implementation

(monitor.erl). To adhere to the compositional synthesis of Section 3.1, the tool

had to overcome an obstacle attributed to pattern bindings. Specifically, in formulae

such as [e]ψ or 〈e〉ψ, subformula ψ may contain free (value) variables bound by

the pattern e. For instance, in [Srv ? {req,Clt, ...}] [Clt ! {resp, ...}]ff, the

Erlang monitor code for the subformula [Clt ! {resp, ...}]ff would contain the

free variable Clt bound by the preceding pattern [Srv ? {req,Clt, ...}] (refer

to Example 3.2.1). Since Erlang does not support dynamic scoping [12], the syn-

thesis cannot simply generate open functions whose free variables are then bound

dynamically at the program location where the function is used. To circumvent

this issue, the synthesis generates an uninterpreted source code string composed us-

ing the util:format() string manipulation function. Compilation is then handled

Tool compiler

parser synthesis

script.hml

monitor.erl
Erlang
compiler

formula.erl
launcher.erl

target system
beam files

...
monitor.beam
formula.beam
launcher.beam

Figure 3.4: The monitor synthesis process pipeline.

32

Chapter 3. A Tool for the Monitorable Subset of µHML

normally (using the static scoping of the completed monitor source code) via the

standard Erlang compiler.

The tool is organised into two main modules. The synthesis process shown in

Figure 3.4 is carried out by the function synth in module compiler.erl. This relies

on generic monitor constructs implemented as function macros inside the module

formula.erl. Table 3.1 outlines the mapping for two of these constructs (the

rest can be found in Appendix B). Parallel composition is encoded by spawning

two parallel actors (lines 3 - 4) followed by forking trace events to these actors

for independent processing (line 5). Action prefixing for pattern e is encoded by

generating a pattern-and-continuation specific function ActMatcher that takes a

trace event Act, pattern-matches it with the translation of pattern e (line 10) and

executes the continuation monitor returned by ActMatcher in case of a successful

match (line 11). One should note that the execution of a monitor always takes a

map environment Env as argument.

The function synth in module compiler.erl consumes the formula parse-tree

(encoded as Erlang tuples), generates the Erlang source code string of the respective

monitor and writes it to monitor.erl. Table 3.2 outlines the tight correspondence

between this compilation and the synthesis function from Section 3.1. To encode

Monitor construct formula.erl module code

Jψ1K × Jψ2K

1 mon_par(Psi1, Psi2) ->
2 fun(Env) ->
3 Pid1 = spawn_link(fun() -> Psi1(Env) end),
4 Pid2 = spawn_link(fun() -> Psi2(Env) end),
5 fork(Pid1, Pid2)
6 end.

e.JψK

7 mon_cnt(ActMatcher) ->
8 fun(Env) ->
9 receive Act ->

10 Psi = ActMatcher(Act),
11 Psi(Env)
12 end
13 end.

Table 3.1: The monitor constructs and their corresponding Erlang code.

33

Chapter 3. A Tool for the Monitorable Subset of µHML

the branching cases of the synthesis function, the compilation returns a tuple where

the first element is a tag ranging over yes, no and any, and the second element,

the monitor source code string. The correspondence is evident for Jψ1 ∧ ψ2K, where

the code on lines 6 - 7 performs the necessary string processing and calls the func-

tion mon_par presented in Table 3.1. For formula J[e]ψK, the translation inserts

directly the function corresponding to ActMatcher (lines 14 - 16) alluded to in Ta-

ble 3.1 — this is passed as an argument to mon_cnt from formula.erl (line 17),

thereby addressing the aforementioned limitation associated with open functions

and dynamic scoping. Pattern Pat is extracted from the parse tree (line 9), while

the continuation monitor source code string Mon is synthesised from the subtree of

Psi (line 10). See Appendix D.0.4 for an example.

The tool instruments the generated monitors to run with the system in asyn-

chronous fashion, using the native tracing functionality provided by the Erlang

VM. Erlang trace BIFs (see Section 2.4.1) instruct the VM to report events of

Synthesis function subcase compiler.erl module function

Jψ1 ∧ ψ2K
def=

Jψ1K if Jψ2K = yes
Jψ2K if Jψ1K = yes
Jψ1K × Jψ2K otherwise

1 synth({and_op, Psi1, Psi2}) ->
2 case {synth(Psi1), synth(Psi2)} of
3 {{Tag, Mon}, {yes, _}} -> {Tag, Mon};
4 {{yes, _}, {Tag, Mon}} -> {Tag, Mon};
5 {{Tag1, Mon1}, {Tag2, Mon2}} ->
6 {any, util:format("mon_par(~s,~s)",
7 [Mon1, Mon2])}
8 end;

J[α]ψK def={
α.JψK if JψK 6= yes
yes otherwise

9 synth({nec, Pat, Psi}) ->
10 case synth(Psi) of
11 {yes, _} -> {yes, "mon_tt()"};
12 {Tag, Mon} ->
13 Fun = util:format(
14 "fun(Act) -> case Act of ~s -> ~s;
15 _ -> mon_end() end end",
16 [pat_to_str(Pat), Mon]),
17 {any, util:format("mon_cnt(~s)", [Fun])}
18 end;

Table 3.2: The monitor synthesis function cases and their corresponding compiler
functions.

34

Chapter 3. A Tool for the Monitorable Subset of µHML

interest from the system execution to a tracer actor executing in parallel; this in

turn forwards said events to the monitor (also executing in parallel). Crucially, this

type of instrumentation requires no changes to the monitor source code (or the

target system binaries) increasing confidence of its correctness. In the tool, com-

piled monitor files together with their dependencies (e.g. formula.erl) are placed

alongside other system binary files. Instrumentation is then handled by a third

module, launcher.erl, tasked with the responsibility of launching the system and

corresponding monitors in tandem.

3.3 Conclusion

This chapter discussed the implementation of a prototype tool that synthesises

and instruments asynchronous monitors from specifications written in mHML,

a monitorable subset of the logic µHML. A number of refinements were made

to the synthesis function from [21] in order to adapt the procedure to generate

concurrent and asynchronous runtime monitors for Erlang. These refinements also

deal with practical (e.g. using Erlang native tracing) and flexibility (e.g. pattern-

matching) considerations that make the tool applicable in realistic settings. Despite

these adaptations, the resulting implementation corresponds tightly to the correct

monitor synthesis specification described in [21], thereby giving high assurances

that the executable monitors generated by the tool are also correct.

35

4. Local Monitoring

The prototype implementation presented in the previous chapter tackles monitoring

from a global standpoint. Chapter 1 outlined the shortcomings that accompany

global monitoring in a concurrent setting, and alluded to the benefits that can be

reaped if local monitoring is used instead. This chapter extends the concepts behind

the tool developed in Chapter 3, and investigates how employing a local, component-

oriented approach makes it possible to consider the system from a granular level,

thus focusing the monitoring effort on individual system components. The following

topics are covered:

• The general idea behind local monitoring;

• The challenges faced when implementing a generic monitoring tool that sup-

ports local and global monitoring;

• An investigation of how local monitoring can be applied in practice on two

different static system setups;

• A qualitative comparison of local and global monitoring on the basis of un-

derstandability, maintainability, expressivity, and fault tolerance;

• A quantitative investigation of the performance benefits attributed to local

monitoring when compared against its global counterpart.

36

Chapter 4. Local Monitoring

The chapter concludes by restating the five assessment criteria from Section 1.2.1

and presenting the final findings achieved by the study in the context of these

criteria.

4.1 An Overview of Local Monitoring

Local monitoring is, in its very essence an instantiation of global monitoring that is

applied selectively to different system components. Selective application focuses the

monitoring effort locally, and critically, distinguishes it from global monitoring in

that monitors neither have access, nor are interested in processing the global trace.

Rather, locally deployed monitors read and process the subset of relevant trace

events by subscribing to a subtrace for a single system component. This, coupled

with the fact that local monitors do not communicate between themselves, lowers

data overheads since monitors perform only rudimentary data handling.

A local approach aids in simplifying the specification of global correctness prop-

erties, while in certain specific settings, it might also make it possible to handle

particular properties that would be difficult to tackle using a global approach (see

Section 4.4.3). Recall the global formula ϕg from Example 1.1.1 and ϕa and ϕb from

Example 1.1.2, restated below:

ϕg = [a]ff ∧ [b]ff ∧ [e] ([a]ff ∧ [b]ff) ϕa = [a]ff ϕb = [b]ff

From a specification aspect, formula ϕg needs to consider all the possible action

interleavings resulting from the execution of processes A and B — a disadvantage

not incurred by formulae ϕa and ϕb. Localisation is also practical from a synthesis

perspective. Large formulae like ϕg are synthesised into monitors composed of an

equally large number of processes. This requires events from the global trace to

be copied and forwarded to every process within the monitor composition (refer

to Section 3.2.2 for details). Handling large numbers of processes in this manner

requires considerable amounts of memory and processing power.

37

Chapter 4. Local Monitoring

a b e b · · ·Monϕg

consumes (A |B)

Tr
c

Sys

(a) Global monitor for formula ϕg consuming action
events from the central trace.

a e

e b

· · ·

· · ·

Monϕa

Monϕb

consumes

consumes

A

B

Sys

Tr
c

Tr
c

(b) Local monitors for formulae ϕa and ϕb consuming
action events from individual subtraces.

Figure 4.1: Global and local monitor configurations.

The synthesis process for the three aforementioned formulae ϕg,ϕa and ϕb results

in the monitor configurations shown in Figure 4.1. The case for formula ϕg produces

a global monitor that processes action events ‘a’, ‘b’ and ‘e’ from the global trace,

whereas the case for formulae ϕa and ϕb yields two local monitors that independently

process action events from the subtraces for processes A and B respectively. By

virtue of its locally assigned tracer, each local monitor automatically gets access to

a subtrace that is free from events generated by other system components (e.g. the

monitor for ϕa never gets action events ‘b’).

The local monitoring setup in Figure 4.1b can be attained either statically

or dynamically. In static scenarios, the number of components to be monitored

is known, and the local monitoring configuration can be set-up before the target

system is loaded. In dynamic scenarios, the system typically scales, and one must

consider more flexible ways with which monitors can be created and implanted

into the running system. As this work focuses mainly on the effectiveness of local

monitoring rather than on how these are actually set up and configured, a static

38

Chapter 4. Local Monitoring

approach to monitoring is favoured in this chapter as a convenient means of studying

local monitoring. Chapter 6 presents an algorithm whereby local monitors are

instantiated dynamically at runtime.

4.2 Implementability

A local monitoring solution that concentrates on static systems can be implemented

in the form of a RV framework, based on the description outlined above. This

implementation can, very conveniently, not distinguish between local and global

monitoring and consider the latter as a degenerate case of local monitoring with a

single component. In order to correctly achieve a monitored system, the implemen-

tation ensures that tracer processes (shown as Trc in Figure 4.1) are started and

registered before the target system fully loads. Neglecting to do so can possibly lead

to a loss of trace events. This is a direct consequence of asynchronous monitoring,

where the system or its subcomponents may start up and continue ahead while the

tracers are still not subscribed to their respective subtraces. The problem is miti-

gated by opting for a synchronised loading mechanism which guarantees that any

target system component that requires monitoring remains blocked until its tracer

is loaded and set up. When this is established, the blocked component is permitted

to proceed, and eventually, trace events elicited by the tracer are deposited into the

monitor’s mailbox in the same order as received by the tracer.

Figure 4.2 illustrates the start up procedure when applied to the example system

Sys def= (A |B |C) from Chapter 1. Assuming only components A and B are locally

monitored, Sys is loaded according to the following protocol:

1 The load specification (load_spec) is processed and used to determine the

start up order of all of the components listed in it. In this example, the load

specification states that components A and B are to be monitored locally.

For component A, the monitor synthesised from formula ϕa is used, whereas

for B, the monitor from formula ϕb is used. Component C is not monitored;

39

Chapter 4. Local Monitoring

load_spec = [{A, Monϕa}, {B, Monϕb}, ...]

a1

Start up system
asynchronously

Block and wait for
sync_req from A, then B

Process sync_req from A
and reply with sync_ack

Process sync_req from B
and reply with sync_ack

Launcher

2

3

4

5

C

A

B

Sys

start up

sync_req

sync_ack

sync_req

sync_ack

4

5

Figure 4.2: Setting up local monitors for components A and B.

2 All of the components in the target system are asynchronously started. Those

designated for local monitoring block, and send sync_req requests with their

PID to the launcher component. Unmonitored components (i.e., C in Fig-

ure 4.2) remain unaffected by this procedure and are loaded normally. As the

system is fully asynchronous, the launcher makes no assumptions on the order

of receipt of the sync_req messages;

3 The launcher blocks its execution and waits for incoming sync_req messages,

as per loading order specified in load_spec. In the scenario depicted in Fig-

ure 4.2, the launcher waits for the synchronisation request from component A,

followed by the one from B. If perchance, these are received in reverse order,

the launcher still ensures that component A is unblocked first, followed by B;

4 The sync_req message from component A is processed and the associated

tracer instantiated. If successful, a sync_ack acknowledgement is sent back

to A, which is now unblocked and continues with its normal execution;

5 The same happens in the case of component B, resulting in the tracer-monitor

arrangement shown in Figure 4.1b.

40

Chapter 4. Local Monitoring

There are three points that merit the reader’s attention. First, the launcher

abides by the component start up sequence given in the load specification load_spec,

immaterial of the order in which sync_req requests are received. This is made possi-

ble through Erlang’s selective message reception [5], where only messages matching

a specific pattern are retrieved from the process mailbox. If no message is pattern-

matched, the receiver process simply blocks until a message with a matching pattern

is deposited into its mailbox. To illustrate, if say, the message sync_req for com-

ponent B is received first, this is put aside, and unless the message for component

A is received, the launcher remains blocked. However, once the message expected

from component A is received it is promptly processed, followed by the one stored

earlier from component B.

Second, per-component blocking is made possible thanks to source code instruc-

tions instrumented inside the monitored components. At runtime, these instructions

communicate with the launcher process and block the caller (e.g. A and B in this

discussion) until an acknowledgement message is received in response. This block-

ing procedure does not distinguish between local and global monitors, as it only

depends on the number of instrumented system components and the corresponding

loading order of each, as specified in load_spec. For the case of local monitoring,

multiple instrumentations need to be performed, one for each monitored component.

Global monitoring requires only a single instrumentation in the top-level system

component.

Third, even though the launcher loads the target system components sequentially

and synchronously, no linear dependency is assumed between these. This is owed

to the simple fact that communication between different concurrent components

takes place only via the exchange of asynchronous messages, the order of which

may be arbitrary, and therefore, unknown to the launcher. Any messages that a

blocked component cannot presently process are not lost, but queued inside the

component’s mailbox. These can be subsequently retrieved once the component

is eventually unblocked. As a result, the functionality of the monitored system is

41

Chapter 4. Local Monitoring

never disturbed, but may, in cases, experience a slightly slow start up depending

on the number of monitored components that require unblocking.

4.3 The Applicability of Local Monitoring

Local monitoring is difficult to apply in cases where the target system does not

lend itself well to being broken down into multiple parts (e.g. monolithic systems).

Rather, as seen in Section 4.1, local monitoring is more suitably applied to systems

that can be easily decomposed into components. The degree of effectiveness of this

localisation however, depends on the architectural setup of these components and

particularly, on whether said components share some form of interaction or lack

thereof.

To illustrate, consider the token issuing system (henceforth referred to as TIS) in

Figure 4.3 consisting of three processes: the front-end, and the back-end comprised

of two components that share no form of interaction. The hash server is responsible

for producing random hash strings, whereas the time server returns the current

time packed into an Erlang tuple of the form: {{yyyy, mm, dd}, {hh, mm, ss}}.

To issue one-time tokens to clients connecting over TCP, the front-end combines

a random hash string and time value which it obtains by interacting with the

back-end servers. Despite its size, the TIS captures the essence of what a typical

component-based system looks like, following the setup of a simplistic micro-service

architecture. Interprocess communication within the TIS happens according to the

protocol defined below:

1 A new TCP request is accepted by the TIS front-end process and the connected

client is put on hold;

2 Simultaneous requests are sent to the hash and time servers in order to

speed up the client’s service time. The front-end then blocks until replies

are received back from both back-end servers. Hash server requests take the

form of the tagged tuple: {hash,Front-endPID}; time server requests, the

42

Chapter 4. Local Monitoring

Hash
server

Time
server

Front-end

Token request Token issued

{hash,Front-endPID
}

{hash,Cnt,Hash}

{t
im

e,
Fr

on
t-e

nd
PID

}

{t
im

e,
Tim

e}

Back-end

1 4

2 3 3 2

Figure 4.3: The TIS architecture with isolated back-end components.

form: {time,Front-endPID}. No assumption is made on the order in which

the hash and time servers handle their respective requests;

3 Both back-end servers eventually respond back to the TIS front-end. A payload

of {hash,Cnt,Hash} is returned by the hash server, and of {time,Time}

by the time server;

4 Upon receipt of these messages, the front-end resumes its execution and issues

a one-time client token based on the received hash and time values.

As can be gleaned by studying Figure 4.3, if one were to attach a local monitor

to each back-end component, this would result in the combined (total) processing

of four trace events that arise as an outcome of the communication taking place

(labelled 2 and 3) between the front and back-end components.

Consider now a slightly modified version of the TIS where the random hash code

is computed using a seed that is based on a time-stamp obtained from the time

server (Figure 4.4). If the same local monitoring strategy is applied on this alternate

version of the TIS (i.e., a local monitor attached to each back-end component), the

combined trace event processing incurred is remarkably higher due to the added

43

Chapter 4. Local Monitoring

Hash
server

Time
server

Front-end

Token request Token issued

{hash,Front-endPID
}

{hash,Cnt,Hash}

{t
im

e,
Fr

on
t-e

nd
PID

}

{t
im

e,
Tim

e}

{time, Hash server PID}

{time, Time}

Back-end

1 4

2 3 3 2

Figure 4.4: The TIS architecture with interacting back-end components.

communication between the back-end components. This stems from the fact that

each local monitor must now consider four trace events — two more resulting from

the mutual interaction between the hash server and time server, in addition to the

previous two (i.e., 2 and 3) due to the front-end-back-end interaction. At this

point, the reader ought to note that the trace events resulting from the shared

interaction between the back-end servers are processed twice, once by each local

monitor. The effectiveness of local monitoring continues to degenerate further as

the number of interactions between the back-end components increases, up to the

point where this starts to become difficult to manage.

The above discussion points to the fact that local monitoring is expected to be

mostly effective when applied to scenarios where components preclude all forms of

interaction with other components, as is the case in Figure 4.3. Should this not

be the case, localisation may still be a viable option, but its effectiveness will be

considerably lower when compared to the former scenario.

The efficacy of local monitoring warrants further study, particularly when com-

pared to that of global monitoring, as this sheds light on the applicability of both

techniques, and whether one outperforms the other in certain situations. The inves-

44

Chapter 4. Local Monitoring

tigation presented next in Sections 4.4 and 4.5 conducts this comparative study in a

practical fashion vis-à-vis the two aforementioned architectures of TIS in Figure 4.3

and Figure 4.4, on the basis of the five assessment criteria listed in Section 1.2.1.

Focus is placed on the relationship that exists between the two monitoring ap-

proaches, as this makes it possible to qualify the benefits that may be gained if

local monitoring is used instead of global monitoring. It helps also to better assess

the earlier claim that local monitoring is mostly effective when applied to scenarios

where components share no means of common interaction.

4.4 A Qualitative Study

The first part of this study investigates local and global monitoring from a purely

qualitative aspect, and concentrates on how properties on Erlang systems can be

specified using the formalism introduced in Chapter 2. Property specifications are

judged in terms of how well these can be written and understood, maintained and

extended. The study also asserts whether failures in system components adversely

affect the overall monitors’ capability to function properly. To fully appreciate the

content that is presented next, the reader is encouraged to refer to Figures 4.3

and 4.4 while reading through. Protocol interaction numbers (e.g. 1) are used to

put formulae into the context of the TIS protocol flow outlined earlier in Section 4.3.

4.4.1 Understandability

As seen in Section 4.3, the complexity of local correctness formulae depends also on

the way in which system components are set up. Local formulae targeted towards

non-communicating components are the easiest to specify, because of the limited

number of interactions that need to be considered. Communicating components are

harder to describe, as formulae must account for all the possible interactions that

occur between components. These scenarios can be studied by consulting the two

versions of the TIS architectures shown in Figures 4.3 and 4.4.

45

Chapter 4. Local Monitoring

Isolated Components

The TIS back-end in Figure 4.3 can be monitored using two local safety properties

that target the hash and time servers separately. A property stating that “the hash

server can never return a hash value equal to the empty string” can be expressed

through the local sHML formula:

max(X,

[HashSrv ? {hash,ToknSrv}] 2 (

[ToknSrv ! {hash,Cnt, ""}]ff 3 ∧ [ToknSrv ! {hash,Cnt,Hash}]X 3)

)

(4.1)

The Erlang variables HashSrv and ToknSrv in formula (4.1) bind with the hash

server and TIS front-end server PIDs respectively; Cnt and Hash bind to the request

count and hash string returned by the hash server. The interaction that formula

(4.1) models starts when the hash server receives a request from ToknSrv to generate

a new hash code 2 . At the point of answering back 3 , the hash server can either

(incorrectly) reply with an empty or a non-empty hash string. The former case is

detected by [ToknSrv ! {hash,Cnt, ""}]ff which promptly flags a violation.

A second safety property “the time server does not crash” can be formulated

using the following sHML specification:

max(X,

[TimeSrv stp killed]ff∧

[TimeSrv ? {time,ToknSrv}] 2 ([TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)

)

(4.2)

The time server process TimeSrv can crash at three possible instants: (i) before

receiving a request, (ii) immediately after it receives the request, or (iii) once a

reply is send back to the sender. Crashes due to cases (i) and (iii) are handled by

the first necessity [TimeSrv stp killed]ff, which flags a violation when the time

46

Chapter 4. Local Monitoring

server stops with a reason of killed. Case (ii) is handled by a second instance of

the same necessity in the last line of formula (4.2).

Communicating Components

The second version of TIS with communicating back-end components (Figure 4.4)

can be monitored utilising the same two local safety properties mentioned previously.

The first property “the hash server can never return a hash value equal to the empty

string” now results in the following, marginally larger local sHML formula:

max(X,

[HashSrv ? {hash,ToknSrv}] 2

[TimeSrv ! {time,HashSrv}] [HashSrv ? {time,Time}] (

[ToknSrv ! {hash,Cnt, ""}]ff 3 ∧ [ToknSrv ! {hash,Cnt,Hash}]X 3)

)

(4.3)

The hash server’s interaction changes minimally and no interleaving needs to be

considered, as the manner in which the hash server acquires the time from the time

server is fixed by the back-end interaction protocol. In fact, the formula changes

only slightly from the one in (4.1) to cater for this added communication step.

In contrast, the second property “the time server does not crash” has to take into

consideration the interaction interleaving introduced on account of the execution

order of the TIS front-end and hash server components. To illustrate, suppose the

time server receives a request from the TIS front-end first. As the time server

handles requests sequentially, this request is serviced before the next one from the

hash server is processed. Yet, it could be the case that while the time server is

processing the TIS front-end request, the hash server deposits its own into the time

server’s mailbox — a thing that cannot be prevented as all communication happens

asynchronously. This does not disrupt the time server’s sequential operation, yet, a

properly formulated specification must account for this possibility as well (i.e., the

hash server’s request trace event is analysed before the one that originates due to

47

Chapter 4. Local Monitoring

the time server sending its response back to the TIS front-end). The same argument

applies if the execution order the TIS front-end and hash server is reversed, i.e., the

hash server sends its request first, followed by the one from the TIS front-end. All

four cases resulting from said interleaved interaction are handled like so:

max(X,

[TimeSrv stp killed]ff∧

[TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff∧

Subcase 1 [ToknSrv ! {time,Time}] 3 (

[TimeSrv stp killed]ff∧

[TimeSrv ? {time,HashSrv}] (

[TimeSrv stp killed]ff ∧ [HashSrv ! {time,TimeHash}]X)

)∧

Subcase 2 [TimeSrv ? {time,HashSrv}] (

[TimeSrv stp killed]ff∧

[ToknSrv ! {time,Time}] 3 (

[TimeSrv stp killed]ff ∧ [HashSrv ! {time,TimeHash}]X)

)

)∧

(4.4)

48

Chapter 4. Local Monitoring

[TimeSrv ? {time,HashSrv}] (

[TimeSrv stp killed]ff∧

Subcase 3 [HashSrv ! {time,TimeHash}] (

[TimeSrv stp killed]ff∧

[TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)

)∧

Subcase 4 [TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff∧

[HashSrv ! {time,TimeHash}] (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)

)

)

)

(4.5)

Subformula (4.4) handles the first two interleavings that arise when the time server

receives a request from the TIS front-end initially 2 . In the first subcase, the time

server promptly replies back to the TIS front-end 3 , and subsequently services the

request that originates from the hash server. In the second subcase, the time server

receives a request from the hash server into its mailbox, but replies to the first

request made by the TIS front-end 3 . Following this, a response is also sent back

to the hash server in reply to the request deposited into the time server’s mailbox.

Subformula (4.5) handles the last pair of interleavings that arise when the time

server receives a request from the hash server first. In the third subcase, the time

server immediately replies back to the hash server, and subsequently receives a

request from the TIS front-end 2 , which it answers with a response 3 . In the

fourth subcase, the time server receives a request from the TIS front-end into its

mailbox 2 , but nevertheless, replies first to the request made by the hash server.

49

Chapter 4. Local Monitoring

Then, it replies to the TIS front-end 3 in answer to the previous request deposited

into the time server’s mailbox.

The reader should note that in the above formulae, the time server always issues

replies according to the order in which requests were received; this is due to the

sequential nature of the time server. The subformula [TimeSrv stp killed]ff that

determines whether the time server has crashed must be interspersed between each

trace event, rendering the resulting correctness formula above considerably larger.

This cannot be avoided because the time server can crash at any point during the

lifetime of the TIS back-end.

Localisation makes it possible to treat a large, complex system as pockets of

functionality that can be individually described by increasing the level of granularity

with which this system is observed. This, in turn simplifies the specification of

formulae and in general, makes them easier to understand and maintain. However,

the ease with which local formulae are specified depends also on the nature of the

components that are targeted, and as seen, the understandability of local formulae

is reduced as the communication between system components increases.

4.4.2 Maintainability

As exemplified above, local properties that target interacting components are not

easily specified. This effect is exacerbated in global properties, on account that these

tend to result in even larger and more complex correctness formulae, because one

must consider the overall behaviour of the system under scrutiny. Such an effect

does not come as a surprise however, as global properties essentially combine the

requirements of the individual local properties.

The two safety properties (4.1) and (4.2) from Section 4.4.1 can be incorporated

into a single global property that is used to monitor the entire TIS back-end. To

account for the combined behaviour (six interleavings in all) of the hash and time

servers in the TIS setup with isolated back-end components (refer to Figure 4.3),

50

Chapter 4. Local Monitoring

the following global sHML formula needs to be specified:

max(X,

[TimeSrv stp killed]ff∧

[HashSrv ? {hash,ToknSrv}] 2 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {hash,Cnt, ""}]ff∧

Subcase 1 [ToknSrv ! {hash,Cnt,Hash}] 3 (

[TimeSrv stp killed]ff∧

[TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)

)∧

Subcases 2, 3 [TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {hash,Cnt, ""}]ff∧

[ToknSrv ! {hash,Cnt,Hash}] 3 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)∧

[ToknSrv ! {time,Time}] 3 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {hash,Cnt, ""}]ff∧

[ToknSrv ! {hash,Cnt,Hash}]X 3)

)

)∧

(4.6)

51

Chapter 4. Local Monitoring

[TimeSrv ? {time,ToknSrv}] 2 (

[TimeSrv stp killed]ff∧

Subcase 4 [ToknSrv ! {time,Time}] 3 (

[TimeSrv stp killed]ff∧

[HashSrv ? {hash,ToknSrv}] 2 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {hash,Cnt, ""}]ff∧

[ToknSrv ! {hash,Cnt,Hash}]X 3)

)∧

Subcases 5, 6 [HashSrv ? {hash,ToknSrv}] 2 (

[TimeSrv stp killed]ff∧

[ToknSrv ! {time,Time}] 3 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {hash,Cnt, ""}]ff∧

[ToknSrv ! {hash,Cnt,Hash}]X 3)∧

[ToknSrv ! {hash,Cnt,Hash}] 3 (

[TimeSrv stp killed]ff ∧ [ToknSrv ! {time,Time}]X 3)∧

[ToknSrv ! {hash,Cnt, ""}]ff

)

)

)

(4.7)

Subformula (4.6) handles the first three interleavings that arise when the hash

server receives a request from the TIS front-end initially 2 . In the first subcase, the

hash server immediately replies back to the TIS front-end 3 , followed by the time

server receiving a request from the TIS front-end 2 and also replying back 3 . In

the second subcase, the time server receives a request from the TIS front-end 2 into

its mailbox, while in the meantime, the hash server sends its response 3 in answer

to the first request sent to it by the TIS front-end. This is followed by a reply from

the time server to the TIS front-end 3 . In the third subcase, the time server also

receives a request from the TIS front-end 2 , but this time, it immediately replies 3

52

Chapter 4. Local Monitoring

to the TIS front-end. The hash-server then sends its response 3 in answer to the

first request sent to it by the TIS front-end. Subformula (4.7) handles the last three

interleavings that occur when the time server receives the first request, and are

essentially analogous to the three cases in (4.6).

Comparing the size of the two local formulae (4.1) and (4.2) from Section 4.4.1

with the global formula just discussed makes it evident that global formulae are

not just a mere summation of the individual local formulae. This stems from the

fact that while the mentioned local formulae consider a small number of trace

events apiece, the global formula needs to consider the total of these events in all

possible combinations. Consequently, the size of global formulae increases rapidly,

and the interleaving effect of trace events gives rise to repeated parts in the resulting

formulae. This effect gets more drastic if the system under observation contains

components that interact between themselves. For instance, the global formula for

the TIS with interacting back-end server components (not shown) needs to consider

a total of ten interleavings, as opposed to the six handled by the global formula in

(4.6) and (4.7). While the size of global formulae makes them challenging to write

and understand, their maintenance is even harder, as even miniscule changes in the

behaviour of one process requires a substantial refactoring of the affected formulae.

Handling changes in considerably sized global formulae like the one above becomes

quickly unmanageable and error-prone due to pockets of repeated logic that must

be updated accordingly.

4.4.3 Expressivity

When formulae are specified in a way that accounts for the possible interleaving

of executing components, one is effectively imbuing the synthesised monitors with

information that establishes how the system is expected to behave at runtime. In

certain cases, concurrency gives monitors the possibility of observing a wider range

of actions that arise from executing components. For instance, the execution of the

53

Chapter 4. Local Monitoring

individual components that make up the system Sys def= (A |B) from Section 1.1 can

take place in one of three ways: (i) component A executes before B; (ii) component

B executes before A; (iii) both A and B execute simultaneously. Whichever the case,

monitors observing Sys will eventually get to see both action ‘a’ from component A,

and action ‘b’ from B. This kind view of the system would not have been possible

if Sys was forced (perhaps, using internal logic) to choose whether to execute

component A or component B.

In such cases as the former, a local approach can facilitate the specification of

a certain subset of properties that are considered to be non-monitorable according

to [21] (e.g. [a]ff∨[b]ff). If say, components A and B from Sys are locally monitored

using the aforementioned example formula, then the individual verdicts produced by

both monitors attached to A and B would need to be combined using the ∨ operator

in order to be able to produce a global verdict. In contrast, a global monitoring

approach requires monitors not only to deal with the different execution interleaving

of actions ‘a’ and ‘b’ (as seen in Example 1.1.1), but would also necessitate the

monitoring algorithm to intelligently handle the forking of action events. This

is on account of the fact that according to the monitor semantics adopted by

the implementation discussed in Chapter 3, forking events between each of the

submonitors for subformulae [a]ff and [b]ff would cause [b]ff to yield inconclusive

when action ‘a’ is forked, and cause [a]ff to yield inconclusive when action ‘b’ is

forked. Physical separation of the submonitors through local monitoring eliminates

this problem, which would otherwise need to be handled in a global monitoring

scheme, thereby, complicating the monitor artefact produced. In this sense, a local

approach not only facilitates the specification of local formulae, but also eases

the way with which certain non-monitorable properties can be synthesised into

executable monitors.

54

Chapter 4. Local Monitoring

4.4.4 Fault Tolerance

Localisation is also useful because the physical separation of monitors, can in cases

prevent the global monitoring effort to continue in spite of partial system failures.

In addition, the lack of communication between monitors removes all kinds of inter-

monitor dependencies so that the failure of one monitor does not affect others. Global

monitoring is not as resilient, and the failure of a single component could create a

domino effect that would prevent the monitored setup from working correctly.

4.5 A Quantitative Study

The second part of the study adopts a quantitative approach and evaluates local

and global monitoring on the basis of three parameters: the target system’s memory

consumption, its CPU utilisation, and responsiveness. Correct evaluation of these

quantitative attributes is paramount, as runtime overheads ultimately serve as a

litmus test for determining the feasibility of a RV setup.

To better understand the effects the system architecture has on the monitoring

techniques applied, the two configurations of TIS presented in Section 4.3 are studied

and the results obtained are compared against those for global monitoring. This

serves to substantiate the conclusions drawn from the qualitative argumentation

presented in Section 4.4, namely that: (i) localisation offers specification-related

benefits when compared to a global monitoring strategy, and (ii) local monitoring

is most effective when applied to non-interacting system components.

4.5.1 Data Analysis and Representation

The decision to expose the functionality of TIS over a TCP endpoint made it

possible and practical to load test the system using off-the-shelf tools that are

not Erlang-specific. For the testing task, the Apache JMeter suite of tools was

employed, especially because it provides a useful user interface that facilitates the

design of test plans. To streamline and optimise the testing process, a series of

55

Chapter 4. Local Monitoring

automated benchmarking scripts were developed to ensure that all measurements

can be captured accurately and automatically.

In the material that follows, the term experiment is used to refer to collection of

benchmarks. A benchmark is performed by load testing the target system using a

fixed number of concurrent requests n. The value of n per benchmark starts at 200,

and is gradually increased to 2000 in steps of 200 (i.e., 200, 400, . . . , 2000) for a

total of ten (i.e., 2000÷ 200) benchmarks per experiment. Each benchmark records

measurements for the following three parameters: (i) memory consumption in MB,

(ii) CPU utilisation as a percentage, and (iii) system response time in milliseconds.

Once each benchmark terminates, the collected measurements are averaged out so

that finally, the experiment consists of three sets of data points (from 200 to 2000),

one for each measured parameter.

To ensure that sufficient data is collected, ten repetitions of each experiment

are performed to obtain metrics for three different system configurations: (i) the

unmonitored version of the system (i.e., the baseline), (ii) the system fitted with

local monitors, and (iii) the system fitted with global monitors. The results for each

set of ten experiments for each system setup are then averaged to obtain repre-

sentative results that are grouped and plotted according to the three performance

parameters being investigated, yielding three plots — the memory consumption

plot, the CPU utilisation plot, and the system response time plot. System response

time plots display the amount of request failures. This error figure, given in terms

of a percentage, represents the ratio of failed requests that resulted when the load

tested system was unable to cope with the number of concurrent requests (e.g. TCP

connection refusals, timeouts and broken pipes), and is computed by taking the

number of failed requests against the total number of concurrent requests performed.

To facilitate their interpretation, all the data plots are fitted with a trend line.

As with any statistical study, the choice of experiment parameters can greatly

affect the outcome of results. The reasons for selecting the values for the maximum

number of concurrent requests per experiment parameter (i.e., 2000), the benchmark

56

Chapter 4. Local Monitoring

interval parameter (i.e., 200), and the number of experiment runs per system setup

parameter (i.e., ten) are discussed in considerable depth in Section 5.3.1. Further-

more, the different precautions that were taken in order to ensure the achievement

of best results are also discussed in the aforementioned section.

4.5.2 Isolated Components

This TIS architecture from Figure 4.3 is evaluated first. In this configuration, the

back-end components share no means of mutual communication. Each of the local

formulae (4.1) and (4.2) need only to consider the two interactions with the TIS front-

end. In contrast, the formula from Section 4.4.2 must contend with the interleaving

that arises when the system is perceived from a global point of view.

The performance measurements that were obtained for said local and global

formulae are shown in Figure 4.5, according to the experiment setup discussed

previously. Figure 4.5a shows the effects local and global monitoring have on the

overall memory consumption as the number of concurrent requests increases from

200 to 2000. While as expected, the unmonitored system’s memory footprint remains

constant due to its static architecture, the same is not true of the local and global

monitored systems. Global monitoring induces the highest overhead, owing to the

large number of processes created in the monitor composition as a result of the large

global formula. Local monitoring, as expected, has a comparably lower performance

cost.

The trace event replication (i.e., forking) that takes place inside global monitors

seems to be affecting the system in terms of its CPU utilisation, as can be observed

in Figure 4.5b. Local monitors used in this TIS configuration are small (due to the

lack of interaction interleaving) and make minimal use of this mechanism, thereby

maintaining lower CPU overheads.

The third plot shows the effects of local and global monitoring on the system’s

response time: the combined effect of memory consumption and CPU utilisation.

A considerable divergence between local and global monitoring is evident, as is the

57

Chapter 4. Local Monitoring

0

500

1000

1500

2000

2500

3000

3500

4000

4500

200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Concurrent Requests

Baseline
Local

Global

(a) Concurrent Requests vs. Memory Consumption

0

5

10

15

20

25

200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
U

ti
lis

at
io

n
(%

)

Concurrent Requests

Baseline
Local

Global

(b) Concurrent Requests vs. CPU Utilisation

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

0.04% 0.04% 0.13%

0.25%

0.26%

1.25%

3.89%

7.75%Baseline
Local

Local Err.
Global

Global Err.

(c) Concurrent Requests vs. Response Time

Figure 4.5: Performance measurements for the unmonitored system, local and global
monitoring (TIS architecture with isolated back-end components).

58

Chapter 4. Local Monitoring

difference between the number of errors due to failed requests. While for global

monitoring, failed request errors initially appear at the point where the number of

concurrent requests reaches 1200, local monitoring introduces errors much later in

the experiment. Moreover, these are noticeably lower when compared to the ones

obtained for global monitoring.

4.5.3 Communicating Components

The second configuration of the TIS with interacting back-end components (see

Figure 4.4) is evaluated next. In this setup, the local formulae are modified to

accommodate the added communication that takes place between the hash and

time servers, as seen in the second part of Section 4.4.1.

The performance measurements in Figure 4.6 suggest that local monitoring

still performs better than its global counterpart, but it does so to a lesser degree.

Figure 4.6a shows the memory consumption plots for local and global monitoring,

where both rates of incline are somewhat close in comparison to those from Fig-

ure 4.5a. The two monitoring approaches appear to consume more memory, as one

might expect with larger correctness formulae.

A similar pattern emerges in Figure 4.6b, where the difference in CPU utilisation

between local and global monitoring, although obviously evident, is less pronounced

than that in Figure 4.5b. To better assess this closer CPU utilisation gap, one does

well to consider the differences between the plot in Figure 4.5b and the one in

Figure 4.6b. A side-by-side comparison of these plots shows that global monitoring

in Figure 4.5b exerts a CPU load of 24.94% at 2000 concurrent requests, whereas in

the current TIS setup, a load of 33.98%, i.e., a rise of 9.04%. A similar comparison

of local monitoring reveals that in Figure 4.5b, local monitoring exerts a CPU load

of 6.12% (at 2000 concurrent requests), whereas in Figure 4.6b, this load steps up

to 19.28%, i.e., a CPU utilisation increase of 13.16%.

Figure 4.6c exhibits similar trends. The response time difference for local mon-

itoring between the two TIS setups is comparatively larger than that for global

59

Chapter 4. Local Monitoring

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Concurrent Requests

Baseline
Local

Global

(a) Concurrent Requests vs. Memory Consumption

0

5

10

15

20

25

30

35

200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
U

ti
lis

at
io

n
(%

)

Concurrent Requests

Baseline
Local

Global

(b) Concurrent Requests vs. CPU Utilisation

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

0.03%
0.03%

3.73% 4.38%

0.03%

2.12%

2.93% 1.41%

7.48%
Baseline

Local
Local Err.

Global
Global Err.

(c) Concurrent Requests vs. Response Time

Figure 4.6: Performance measurements for the unmonitored system, local and global
monitoring (TIS architecture with interacting back-end components).

60

Chapter 4. Local Monitoring

monitoring. In fact, the response time impact for global monitoring in Figure 4.5c

is of 163.42ms (at 2000 concurrent requests) whereas in Figure 4.6c, this impact

is of 168.10ms; the failed request error between both plots is negligible. For local

monitoring, Figure 4.5c shows a response time of 28.29ms and a failed request error

of only 0.13%, whereas for the current TIS setup with communicating back-end

components, a response time of 90.21ms and a failed request error of 4.38% (refer

to Figure 4.6c). This amounts to a response time degradation of 61.92ms and an

increase of 4.25% in failed request errors for the current TIS setup.

4.5.4 Commentary

The local and global monitoring techniques considered in this dissertation employ

the synthesis described in Chapter 3 to generate compositional monitors that unfold

recursively. Unfolding enlarges the monitor (in terms of its number of composing

processes) each time it re-instantiates a fresh copy of itself (refer to discussion in

Section 3.1). Consequently, monitors are rendered increasingly inefficient, and while

additional processes consume more memory, the forking mechanism requires extra

processing in order to be able to replicate and deliver trace events to each of these

processes. The adverse effects of this behaviour on both the memory and CPU can

be clearly seen in Figures 4.5 and 4.6.

The quantitative results in Sections 4.5.2 and 4.5.3 show that local monitoring

offers practical advantages when it is used to monitor component-based systems.

Additionally, the results also reveal that while in general, the benefits of localisation

are clear in cases where local monitoring is applied to isolated components, these

are less evident in scenarios involving communicating components. It is interesting

to note that despite the obvious divergence between local and global monitoring,

as observed in both TIS configurations, the performance plots for the unmonitored

system hardly changed. This suggests that alterations to the architecture, however

slight, might not only dictate which monitoring strategy is best employed, but also

determine the extent of its effectiveness.

61

Chapter 4. Local Monitoring

4.6 Conclusion

This chapter revisits the five assessment criteria from Section 1.2.1, and summarises

the results obtained in this study:

1. Understandability: Locally specified formulae focus only on the functional-

ity of isolated components. These are simpler, less error-prone to write, and

need not account for all the interleaving actions due to trace events that would

otherwise need to be considered if global specifications are used;

2. Maintainability: Local specification scripts are more maintainable and thus,

easy to extend. Amendments due to new requirements can be safely admin-

istered only to the affected system components, safe in the knowledge that

refactoring local formulae does not impact other unrelated specifications. This

is not the case for global specifications, where slight changes in the system

require substantial formulae re-engineering. Furthermore, the addition of new

components can be easily handled using local specifications, but is more diffi-

cult to manage if a single global specification is used;

3. Expressivity: Concurrency enables monitors to observe a larger portion of

the system, making it possible to specify properties considered to be non-

monitorable in certain system setups. Localisation facilitates not only the

specification process as already seen, but also favours the synthesis of monitors

that have a simpler implementation. Utilising monitors that follow closely the

synthesis described in Chapter 3 increases the confidence in the monitors’

correctness. A global approach makes this difficult to achieve;

4. Fault Tolerance: Local monitors can be easily deployed on different system

components. Failure in these components, can, in certain cases, be gracefully

handled by local monitors, thereby making them resilient to partial system

failures. Additionally, isolation between local monitors ensures that failed

monitors themselves do not affect one another;

62

Chapter 4. Local Monitoring

5. Performance: Global monitoring requires centralised access to the execution

trace, whereas local monitors adopt a decentralised approach where each

subscribes to a local subtrace. The latter method brings about the following

performance benefits: (i) monitoring is cheaper as localised monitors work in

complete isolation from each other, (ii) local monitors consume only trace

events that are relevant to the formula being evaluated, and (iii) trace events

do not flow through a central data collection point and bottlenecks are less

likely to occur.

This study demonstrates that local monitoring is not a silver bullet that mitigates

all the problems associated with global monitoring. While its benefits over the

latter are clear when applied to systems with isolated components, applying it

to communicating components may possibly yield benefits, though these are less

straightforward to interpret and quantify.

It would have been interesting to study components that exhibit higher levels

of communication. This would have made it possible to explore how quickly local

monitoring degrades in proportion to the number of communication interactions

between monitored components. Due to the lack of time, this was not attempted.

Using the data obtained from the experiments done so far, one can extrapolate

the trend lines in Figure 4.6 and come up with an answer for just two interactions.

Considering more interactions requires additional experimentation. This would

undoubtedly go a long way in demonstrating that any monitoring approach is in

general very sensitive to changes in the system architecture it is applied to, and

therefore, cannot be studied in a vacuum.

63

5. Case Study

Chapter 4 studied local monitoring through a number of qualitative arguments

and quantitative experiments. These studies were conducted on a small component-

based system called TIS built specifically for the task of comparing both monitoring

approaches. Two different TIS configurations were investigated so as to determine

the cases where local monitoring is at its most effective.

Modest systems like the TIS are employed to great effects in initial studies, and

despite their simplistic functionality, capture the most essential and representative

features of larger and more complex systems. They also make it easy to test different

artificial or corner-case scenarios without the need to invest in too much develop-

ment effort. Yet, a generalised study cannot be conducted solely under controlled

conditions, and even though promising results were obtained in Chapter 4, a truly

holistic approach demands that these be also investigated in a real-world setting.

This chapter presents a study of the practical applications of local monitoring

by evaluating a third third-party industry-level software called Ranch. Since the

effectiveness of local monitoring is central to this assessment, a proper analysis of

Ranch is made in order to identify areas within the software where local monitoring

can be ideally applied. The case study aspires to give further evidence of the utility

of local monitoring, thereby increasing the level of confidence in the results obtained

in Section 4.5. Four main topics are covered in this chapter:

• An overview of the OTP framework on which Ranch is built;

64

Chapter 5. Case Study

• An analysis of the internal interaction protocol used by Ranch when handling

TCP sockets;

• A discussion of the experiment design used to conduct the quantitative case

study on Ranch, including the precautions taken to ensure the achievement

of best results;

• An evaluation of the performance benefits of local monitoring when applied

to three different Ranch configurations.

5.1 A Third-Party Application

Ranch is a socket acceptor pool for TCP protocols developed in Erlang/OTP. It

exhibits the inherent qualities of a dynamic concurrent system that is able to

scale according to the current computational demands. The study presented in this

chapter however, concentrates on the static aspects of Ranch, and considers only

those components whose existence remains fixed throughout the entire application

lifetime. To better understand the basic Ranch concepts that follow, a brief overview

of the OTP framework is given first.

5.1.1 The Open Telecom Platform

Open Telecom Platform (OTP) is an open source collection of tools and libraries

which make it easy to design, develop and deploy concurrent Erlang software systems

that exhibit the properties of telecom applications [5, 12, 24]. OTP bases itself on

the Erlang infrastructure and provides amongst other things, basic abstraction

libraries and common behavioural patterns that relieve the developer of the burden

of having to implement recurrent functionality manually.

Out of the most common forms of behavioural patterns offered by OTP, the

supervisor is perhaps the most fundamental and widely used OTP behaviour. It

embodies the notion of supervision trees — a hierarchical organisation of processes

65

Chapter 5. Case Study

wherein supervisors are only responsible for spawning, starting and looking after

their descendant processes, and in cases of failure, ensure that some corrective action

is taken. This depends wholly on the supervisor configuration. For instance, the

supervisor may choose to restart the terminated component or kill and restart an

entire supervision subtree to avoid inconsistencies that might have arisen due to

the terminated component. In addition to workers, processes that are located in the

extremities of the aforementioned tree arrangement, supervisors can also supervise

other supervisors — this is what gives rise to supervision trees, one of the key

ingredients used in creating resilient and fault-tolerant applications in Erlang.

A collection of Erlang OTP behaviours, custom modules and resources is typi-

cally packaged in an OTP application, which is the standard way of distributing

related functionality in the form of libraries. These libraries can either contain nor-

mal APIs that support other applications, or full-blown deployable artefacts; Erlang

uses the term application to refer to both instances. Applications can themselves

depend on other applications, and their dependencies in turn, can do the same,

giving rise to a tree of dependencies, as is common in other languages such as Java.

Deployable OTP applications conform to the application behaviour which requires

the presence of a top-level supervisor tasked with starting up and looking after the

entire application supervision tree.

5.1.2 The Ranch Architecture

Ranch is packaged as an OTP application whose top-level supervisor, ranch_sup,

starts the supervision tree depicted in Figure 5.1. It is responsible for overseeing

the execution of the ranch_server (worker) process and the ranch_listener_sup

supervisor. The ranch_server keeps track of Ranch listeners and associated ac-

ceptors. A listener represents the collection of acceptor processes that wait on a

port for incoming connections. Figure 5.1 shows a Ranch configuration with a single

listener and two acceptor processes, acc_1 and acc_2, bound to the same socket.

The ranch_acceptors_sup supervisor manages the life cycle of acceptor processes,

66

Chapter 5. Case Study

ranch_sup

ranch_listener_sup

ranch_server

ranch_acceptors_sup

ranch_conns_sup

acc_1

acc_2

Protocol
handler

{ranch_conns_sup, start_protocol, Acc 2 PID, Socket}

Ranch Conns Sup PID

{shoot, ...}

1

2

3

Figure 5.1: The Ranch supervision tree with one listener and two acceptors.

whereas the ranch_conns_sup supervisor handles the dynamic instantiation of pro-

tocol handler processes that attend to TCP connections requests made on Ranch.

New connection requests directed to a Ranch socket are handled by any acceptor

that happens to be available at the time, as per the protocol below:

1 The accepting acceptor, acc_2 in Figure 5.1, sends the new connection details

to the ranch_conns_sup and immediately blocks. These details are packed

into a tuple of the form {ranch_conns_sup, start_protocol,Acc 2PID,

Socket}, where Acc 2PID denotes the PID of the sender acceptor, and Socket

contains the socket reference number;

2 The ranch_conns_sup supervisor spawns a new protocol handler, transfers

the socket ownership to the protocol handler, and hands over to it additional

information packed in the tuple {shoot, ...}. From this point onwards, the

protocol handler engages in direct communication with the socket;

3 A successful creation of the protocol handler triggers an acknowledgement

message that is sent from the ranch_conns_sup back to the acceptor. If after

creating the protocol handler, the connection limit configured on the listener

67

Chapter 5. Case Study

is reached, no acknowledgement is sent, leaving the acceptor blocked and

preventing it from accepting new connections1. Otherwise, on receipt of the

acknowledgement, the acceptor unblocks and goes back to listening mode.

The protocol described above encompasses both the dynamic and static aspects

of Ranch. In the dynamic case, protocol handlers are created on demand, and while

bounded by the connection capping configured on the listener, their count can

range between zero and this configured maximum. In the static case, the number

of instantiated acceptor processes is pre-determined at start up, and remains fixed

throughout the lifetime of the application. At any time instant where the number of

concurrent connections exceeds that of available acceptors, these are either queued

on the TCP backlog or outright refused if the backlog is full.

5.2 Monitoring for the Ranch Protocol

Ranch’s component-based architecture lends itself well to being monitored using

a local approach. In particular, the TCP connection handling protocol from Sec-

tion 5.1.2 shows that acceptor processes do not engage in mutual communication,

making these an ideal target on which local monitoring can be applied. A global

approach could also be considered as an alternate means of monitoring, although

as discussed below, its use turns out to be impractical.

The study that follows investigates the suitability of local monitoring. Further-

more, the investigation is also extended to global monitoring, in order to better

compare and understand the benefits attributed to localisation. Both techniques

are used to runtime verify a fragment of the Ranch TCP connection handling pro-

tocol. This verification focuses on the Ranch static subsystem comprised of the

ranch_conns_sup and one or more acceptor components, as described above (see

Figure 5.1). For example, a positive property that monitors for the possibility that

1Acceptor processes that have been blocked due to a connection capping are resumed once
a sufficient number of protocol handlers have terminated and the total listener connection count
goes below the configured maximum.

68

Chapter 5. Case Study

an acceptor crashes requires that the following holds: “after an acceptor sends a

connection initiation request to the ranch_conns_sup supervisor, it either crashes

or receives an acknowledgement in reply.” Expressing the property as a local cHML

formula for two acceptors is easily accomplished:

min(X,

〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt, Sock}〉 1 (

〈Acpt stp killed〉 tt ∨ 〈Acpt ? ConnsSup〉X 3)

)

(5.1)

where the Erlang variable ConnsSup binds with the ranch_conns_sup supervisor

PID, and Acpt and Sock bind with the acceptor PID and socket reference number re-

spectively. Formula (5.1) specifies the interaction where first, a connection initiation

request is sent by the acceptor to ranch_conns_sup 1 . Subsequently, the acceptor

either crashes instantly, or receives an acknowledgement from ranch_conns_sup 3

in reply to its message.

Specifying the property above using a global approach is not as easily accom-

plished, because the resulting formula suffers from a size explosion problem due

to the number of interleavings that must be considered (see Appendix C for dis-

cussion). What is worse, the size and complexity of the global formula worsens

the more acceptors are considered. Likewise, monitors synthesised as a result grow

increasingly large, up to a point where these become unwieldy to use in practice

(refer to Section 5.3).

Conversely, a local approach retains all of the qualitative advantages attributed

to localisation (refer to concluding remarks in Chapter 4); this is in particular very

apparent in the fact that formula (5.1) is agnostic of the number of Ranch acceptors

configured. Determining the performance impact of local and global monitoring

however, requires a deeper analysis of both approaches from a practical aspect.

This exploration takes the form of the quantitative investigation that is presented

in the next section.

69

Chapter 5. Case Study

5.3 A Quantitative Evaluation of Ranch

An evaluation of the performance impacts of local and global monitoring on Ranch

is presented in this section. It bases itself on a series of experiments specifically

designed to test different Ranch configurations. Performance is assessed based on the

three parameters already used in Section 4.5, namely, the target system’s memory

consumption, its CPU utilisation, and its responsiveness. These experiments employ

the formulae mentioned in Section 5.2 that target only the static part of Ranch.

5.3.1 Experiment Setup

The selection of an appropriate evaluation setup plays a vital role in determining

how experiments are conducted, as this has direct and far-reaching effects on the

results that are obtained. It is therefore paramount that the design of such a setup

incorporates a good choice of tools, makes sensible assumptions and takes the

necessary precautions in order to reduce as much as possible the risk of errors in

the data collection and analysis phases.

Design Considerations

A holistic approach was taken so that the same tools and automated benchmarking

scripts used for evaluating Ranch could also be used to evaluate the two configura-

tions of the TIS from the previous chapter. This made it possible to concentrate the

development effort into creating a unified experiment setup that caters for all the

systems studied in this dissertation. As a result, the launcher implementation from

Section 4.2, the Apache JMeter suite of tools, and automated benchmarking scripts

from Section 4.5.1 are also used to conduct the evaluation on Ranch in Section 5.3.2.

The benchmarking scripts alluded to in Section 4.5.1 have been developed as a

means to fix the conditions each experiment2 run is performed with. This serves the

2The same definition given in Section 4.5.1 is reused in this chapter.

70

Chapter 5. Case Study

purpose of automating the tedious testing procedure, but more importantly makes

it also possible to obtain repeatable measurements for each of the executed tests.

Single experiment runs are driven by a first script that defines the overall strategy

used to benchmark a chosen target system configuration (e.g. the locally monitored

system). It takes care of (i) starting the Erlang VM for the target system configura-

tion, (ii) executing the JMeter test plan, parametrised by the number of concurrent

requests n, (iii) averaging the results obtained by JMeter, and (iv) plotting the

averaged data. The number of concurrent requests n for each test plan execution in

step (ii) is increased from 200 to 2000 in steps of 200, resulting in ten benchmarks

for a single experiment run. Ten repetitions of the same experiment are performed

using a second script, and the resulting data is averaged to yield the final plots (see

discussion in Section 4.5.1).

The Choice of Experiment Parameters

Choosing parameters is not always straightforward, and generally requires a thor-

ough observation and interpretation of the data. One common method used in

statistics involves visually analysing the data plots obtained during experiment tri-

als [32]. Based on this examination, the parameters are tweaked and the process of

running experiments is repeated until satisfactory and statistically sensible results

are obtained with the chosen settings. These are afterwards plugged into the evalu-

ation setup and used to drive the experiments. The case study adopts this iterative

fine-tuning method to determine appropriate values for the three parameters used

when evaluating the test setups in Sections 4.5 and 5.3:

1. maximum number of concurrent requests per experiment parameter;

2. benchmark interval parameter;

3. number of experiment runs per system setup parameter.

Selecting the value of Parameter 1 was possible once a fully functional exper-

iment setup had been developed. Its choice is motivated by the need to simulate

71

Chapter 5. Case Study

benchmarks that approach as much as possible loads typical of a real-world Ranch

setup operating under normal conditions. In practice however, the value of this

parameter is largely imposed by the resources available on the benchmarking ma-

chine. A number of exploratory runs were conducted using different Ranch and TIS

configurations, so as to determine the maximum possible limit that could be reliably

attained without crashing the testing setup. These test runs revealed that while

the unmonitored and locally monitored system could be easily pushed beyond a

couple of thousand concurrent requests, global monitoring was consistently failing

at around the 2050 mark. In view of this upper limit, choosing a value of 2000

concurrent requests was considered reasonable, especially since at values as low

as 1000, the divergence between local and global monitoring was already clearly

apparent.

Rounding the number of concurrent requests to 2000 made it also convenient

to pick a value for the number of benchmarks that are executed in one experiment

run, i.e., Parameter 2. This choice also determines the volume of data that is

collected during the run, the time it takes to complete, and also the granularity

with which data plots are rendered (i.e., the tick mark frequency on the x-axis).

An interval of 200 turned out to be a suitably balanced number, because it gives a

good visual indication of changes in the data, while still keeping the time taken for

an experiment to execute reasonably moderate. Pilot tests conducted using values

larger than 200 (e.g. 300 or 400) detracted from the experiments’ granularity, while

smaller values (e.g. 100 or 50) did not provide additional statistical insight.

The value of the last parameter, Parameter 3, was chosen on the basis of a simple

check that determines whether a sufficient number of experiment repetitions has

been performed so that the data collected is representative of the entire experiment.

Such a procedure can be accomplished fairly easy through visual means. It involves

plotting the set of data points from each single experiment run onto the same

graph, and check whether the trends correspond (i.e., the majority of the plots

superimpose). For this experiment design exercise however, this procedure was

72

Chapter 5. Case Study

carried out using the numerical method described next.

To begin with, an initial value of five was chosen for the number of times

an experiment run is repeated. This was used to execute five experiment runs

for a randomly selected system setup (e.g. Ranch with two acceptors and local

monitoring). Before going further, one should recall that an experiment consists

of ten benchmarks (i.e., 200, 400, . . . , 2000), and that each benchmark yields the

average values for the three performance parameters: (i) memory consumption,

(ii) CPU utilisation, and (iii) system response time.

The average (x̄), standard deviation (σ) and coefficient of variation (CV =
σ
x̄
×100) for each of these three parameters was calculated across all five experiments

for each benchmark interval. To illustrate, for the first benchmark interval at 200,

the x̄, σ and CV for performance parameters (i), (ii) and (iii) are computed using

the data from each of the five experiment runs; this is then repeated again for the

second benchmark interval at 400 to obtain the second set of x̄, σ and CV, and so

on until the tenth benchmark at 2000 is reached. The result is a set of three (one

for each performance property) calculations of x̄, σ and CV per benchmark interval,

i.e., a total of ten calculated over all of the five individual experiment runs.

In order to measure whether increasing the number of test runs from five to ten

yields a better data set, the same procedure was also repeated with ten experiment

runs. The CV values for each benchmark interval in the set of ten experiment

runs were afterwards compared with the corresponding ones obtained with five

experiment runs. For instance, the two CV values for ten and five experiment runs

were compared for the first benchmark at interval 200, the next pair of CV values

compared for the second benchmark at interval 400, and so on. The respective CV

values in all benchmark intervals were sufficiently close, indicating that there was

low variability between the two sets of experiment runs. It also implies that the data

obtained with five repetitions is more or less representative of the data obtained

with ten repetitions. Furthermore, this similarity also suggests that increasing the

number of repetitions beyond ten would only very slightly improve the data, and

73

Chapter 5. Case Study

that using a larger number of repetitions adds negligible CV improvements. In the

end, a value of ten experiment repetitions was favoured instead of five because the

added precision contributed to more robust results3.

The CV was also useful when performing data spot checks on benchmark intervals

that were not comparable, e.g. 2000 with 200. For instance, x̄ and σ for the average

response time for 200 concurrent requests cannot be compared to that for 2000

concurrent requests, because the latter will certainly be larger (e.g. due to slowness

in the system). A comparison based on their CV values ensures that despite the

obvious large differences in x̄ and σ, their respective ratio is comparable [3].

Precautions

In addition to the standard precautions such as repeated runs of the same experi-

ment, the ones discussed below were additionally taken:

• Unoptimised Monitors: As explained in Section 3.2.2, recursive unfolding

enlarges monitors in terms of their composing processes. Continuous increase

in the number of processes, and in turn, the amounts of memory and CPU

resources consumed leads to an eventual resource exhaustion, making it dif-

ficult to push the limits of the monitored system. This effect was partially

mitigated by starting a fresh Erlang VM each time a new benchmark was

performed;

• Initial Performance Spikes: Immediately performing benchmark on freshly

loaded systems usually results in the first handful of measurements accounting

for the lazy start up of the internal VM infrastructure. This is easily spotted

in plots that exhibit performance spikes in the initial set of data points. Such

3 The similarity comparison carried out at different benchmark intervals for ten and five
repeated experiments was done on the basis of the CV alone. This is because it can be tricky
to rely only on x̄ and σ, as these quantities may vary between different experiment runs, and
choosing an appropriate numerical range that deems whether x̄ and σ are close or far apart is not
always straightforward. However, a comparison using the ratios of x̄ and σ, i.e., the CV, makes
this easy to deal with.

74

Chapter 5. Case Study

erroneous readings can be minimised or altogether eliminated if a series of

warm-up requests are performed before the actual experiments are started.

Doing so ensures that the measurements collected from experiments runs are

free from irregularities and representative of the true behaviour of the system;

• Performance Measurements Lag: The asynchronous monitors studied in

this work can give rise to instances where the system outpaces its monitors.

In certain settings, this lag grows significantly large such that the monitors

are actively processing trace events long after the system has completed its

execution. A correct methodology for collecting memory consumption and

CPU utilisation performance metrics should take this lag into account, and

only harvest the required measurements once the monitored system stops

executing. Choosing the correct time that is spent waiting before taking

the two aforementioned measurements, depends very much on the system

being tested and the state of its monitors. For instance, large systems whose

monitors unfold repeatedly take longer to execute than small systems with

non-recursive monitors. In all of the experiments presented in Section 5.3, the

amount of time spent waiting before measurements are taken was selected

empirically, based on a number of trials conducted on different Ranch and

TIS configurations. One should mention that lagging monitors do not affect

the system response time performance measurement because this is instantly

measured. If a response is not returned within the specified time limit, the

request times out, and is subsequently logged as an error.

5.3.2 Performance Measurements

The performance impact local and global monitoring exert on Ranch is studied and

compared next. To better understand how different Ranch configurations may be

affected by local monitoring, two setups were evaluated: (i) the basic Ranch setup in

Figure 5.1 with two acceptors, and (ii) one with four acceptors. As done previously

75

Chapter 5. Case Study

in Section 4.5, the results are compared to the unmonitored version of the system,

as this makes it possible to better interpret the data plots obtained from each

experiment.

The Ranch setup with two acceptors is used as a starting point of this study.

It shows how local and global monitoring behave when applied to the smallest

possible configuration that introduces interleaving at the connection or front-end

level. A small number of acceptors makes Ranch susceptible to bottlenecks (i.e.,

low throughput), and therefore, difficult to push its limit to a point where one

can get a clear idea of how the monitored system is affected when subjected to

large numbers of concurrent requests. The Ranch documentation [25] recommends

that the configured number of acceptors is set to a hundred. This is high enough

to always have acceptors ready to handle new connections, and sufficiently low

that it does not impact the system’s performance. In practice however, studying

Ranch configurations with more than four acceptors was problematic because global

monitoring continually led to resource exhaustion.

In order to achieve a test configuration that resembles closely those used in

real-world settings, Ranch is used in conjunction with a small, fast and modular

HTTP server called Cowboy [25]. Cowboy delegates all its TCP socket handling to

Ranch so that any connection attempts made on Cowboy are serviced by Ranch. To

drive the entire Cowboy-Ranch setup, a simple time service is exposed over a REST

end-point so that HTTP requests on Cowboy trigger the Ranch internals as required.

All the experiments were conducted on a 3.1 GHz Intel Core i7 processor with 16

GB of memory.

A Ranch Configuration with Two Acceptors

Figure 5.2 shows the performance measurements obtained for the first Ranch con-

figuration with two acceptors. All three plots demonstrate with high consistency

that global monitoring induces overheads that are substantially higher than those of

local monitoring. The effects of the bottleneck created by having two acceptors can

76

Chapter 5. Case Study

0

500

1000

1500

2000

2500

200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Concurrent Requests

Baseline
Local

Global

(a) Concurrent Requests vs. Memory Consumption

0

2

4

6

8

10

12

14

16

18

200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
U

ti
lis

at
io

n
(%

)

Concurrent Requests

Baseline
Local

Global

(b) Concurrent Requests vs. CPU Utilisation

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

0.61%

16.79% 23.97%

29.33% 36.09%

37.31%
40.15%

40.25%
Baseline

Local
Local Err.

Global
Global Err.

(c) Concurrent Requests vs. Response Time

Figure 5.2: Performance measurements for the unmonitored system, local and global
monitoring (Ranch with two acceptors).

77

Chapter 5. Case Study

be seen if one compares the CPU utilisation and response time plots in Figure 5.2b

with those in Figure 5.2c. A close inspection reveals that as the number of errors

in the system response time plot increases, CPU utilisation slowly dips. Errors due

to failed or timed out connection requests exert a lower load on the CPU because

fewer connections need to be handled and less monitor-related processing occurs.

Figure 5.2 makes it hard to discern the relationship that exists between the

unmonitored and locally monitored system, as the plot for local monitoring is not

clearly displayed. An in-depth discussion on the comparison between the two can

be found at the end of this section (see Figure 5.4).

A Ranch Configuration with Four Acceptors

All three performance plots in Figure 5.3 maintain the trend that local monitoring

outperforms global monitoring. The plots also show how the updated Ranch con-

figuration with four acceptors affects both monitoring approaches. Increasing the

number of accepting processes to four seems to relieve some of the effects created by

the bottleneck in the previous configuration. In fact, the consequence of this higher

throughput can be clearly seen in the memory consumption and CPU utilisation

plots.

The difference in the rate of incline of the memory consumption plot for global

monitoring in Figure 5.3a, when compared to the previous one in Figure 5.2a is

significant. This is attributed to the higher number of accepted connections, as

indicated by the slight decrease of the overall request error rate in Figure 5.3c. A

reduced number of request failures means that additional connections were handled

in comparison to the previous Ranch configuration with two acceptors; these in turn

instantiate more monitor processes that require higher computational resources, as

attested by Figures 5.3a and 5.3b.

Despite increasing the number of acceptors from two to four, the request error

for the global monitoring plots shown in Figure 5.2c and Figure 5.3c hardly varies,

even though with additional acceptors, Ranch ought to have been more responsive.

78

Chapter 5. Case Study

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Concurrent Requests

Baseline
Local

Global

(a) Concurrent Requests vs. Memory Consumption

0

5

10

15

20

25

30

35

40

200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
U

ti
lis

at
io

n
(%

)

Concurrent Requests

Baseline
Local

Global

(b) Concurrent Requests vs. CPU Utilisation

0

200

400

600

800

1000

1200

1400

1600

1800

200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

2.83%
13.33%

24.50%
33.69%

37.98%

42.13%

43.87%Baseline
Local

Local Err.
Global

Global Err.

(c) Concurrent Requests vs. Response Time

Figure 5.3: Performance measurements for the unmonitored system, local and global
monitoring (Ranch with four acceptors).

79

Chapter 5. Case Study

This can be explained if one considers the sharp increase in memory consumption,

as demonstrated by Figure 5.3a. Such a steep trend line can only result from the

instantiation of a large amount of monitors, made possible by the higher throughput

due to the two extra acceptors. The considerable memory load induced by these

monitors slows the system drastically, and may possibly be the cause of the high

number of request errors obtained. One may note that the CPU utilisation plot

does not dip like the one in Figure 5.2b, suggesting that perhaps, rather than being

refused as was the case with two acceptors, requests were taking too long to be

serviced, finally timing out. As in the previous plots in Figure 5.2, the relationship

between the baseline and local monitoring plots is hardly perceivable. These two

are studied and compared next.

A Realistic Ranch Configuration

In the previous two cases, a proper evaluation of the Cowboy-Ranch setup was

stymied by the high overheads due to global monitoring. Yet, these served to clearly

establish the performance advantages attributed to local monitoring. This next

evaluation focuses on the behaviour of local monitoring when applied to a realistic

Ranch setup configured with the recommended number of one hundred acceptors.

Evaluating such a configuration is particularly interesting, since it sheds light on

how a locally monitored server might behave under production-level conditions.

Moreover, it makes it possible to ascertain whether the behaviour of local monitoring

under controlled conditions (see results in Section 4.5) is comparable to the one

observed in a real-world setting.

The performance measurement plots of the unmonitored and locally monitored

system shown in Figure 5.4 indicate that the overheads induced by local monitoring

are reasonably low, and somewhat close to those of the unmonitored system. More

importantly, each local monitoring trend line in the three performance plots exhibits

an analogous rate of change to that of the unmonitored system. This is highly

indicative of the possibly of local monitoring inducing the additional performance

80

Chapter 5. Case Study

54

55

56

57

58

59

60

61

62

200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

C
on

su
m

pt
io

n
(M

B
)

Concurrent Requests

Baseline
Local

(a) Concurrent Requests vs. Memory Consumption

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
U

ti
lis

at
io

n
(%

)

Concurrent Requests

Baseline
Local

(b) Concurrent Requests vs. CPU Utilisation

0

2

4

6

8

10

12

14

16

200 400 600 800 1000 1200 1400 1600 1800 2000

R
es

po
ns

e
T

im
e

(m
s)

Concurrent Requests

Baseline
Local

(c) Concurrent Requests vs. Response Time

Figure 5.4: Performance measurements for the unmonitored system and local mon-
itoring (Ranch with one hundred acceptors).

81

Chapter 5. Case Study

overheads in a manner that follows the same resource consumption pattern as the

one for unmonitored system.

In such cases, one would be able to forecast the additional resource requirements

that would be introduced by the use of local monitoring, well ahead of the system’s

deployment. While much more experimentation and data collection is needed to

substantiate this conjecture, an indication of what might happen can be obtained

by fitting each of the plots in Figure 5.4 with appropriate equations that can be

used to extrapolate the results by extending the x-axis range as required.

5.4 Conclusion

This chapter explored the extent to which local monitoring can be effectively applied

in practice to a third party system, specifically designed and configured for real-

world use cases. It focuses on runtime verifying a fragment of the Ranch acceptor

protocol discussed in Section 5.1. The appraisal reassesses the quantitative results

achieved earlier in the controlled experiments conducted in Chapter 4. Furthermore,

it reaffirms the advantages local monitoring has over its global counterpart. The

data plots obtained when evaluating the Ranch configuration with one hundred

acceptors particularly demonstrate with a high degree of confidence the viability

of possible pragmatic applications of local monitoring. Lastly, the data plots seen

so far (see also Chapter 4) strongly suggest that a global monitoring approach is

bound to fail in practice, due to the substantial amounts of memory it consumes.

82

6. Towards Dynamic Local

Monitoring

At its crudest, dynamic local monitoring describes the problem of creating monitors

on demand for some target system component that is instantiated at runtime. This

process not only depends on the dynamic behaviour of the system being observed,

but more so, on the specifications that determine which system components ought to

be monitored. The local monitoring of static components as seen in Chapter 4, can

be perceived as a degenerate case of dynamic local monitoring where the monitored

components are created once the system starts, and persist throughout its entire

lifetime.

This chapter discusses a first preliminary attempt at developing a dynamic local

monitoring algorithm for concurrent (actor-based) systems. The following topics

are covered:

• The basics and general idea behind dynamic local monitoring;

• A presentation of a generic dynamic local monitoring algorithm accompanied

by a discussion on the challenges involved when adapting the algorithm to an

actor-based scenario;

• A high level overview of a proof of concept implementation in Erlang.

83

Chapter 6. Towards Dynamic Local Monitoring

6.1 An Overview of Dynamic Local Monitoring

Dynamic local monitoring extends the principles of local monitoring discussed earlier

in Section 4.1 to a setting where monitored components are created dynamically

at runtime. Handling these types of scenarios requires the monitor arrangement to

follow closely that of the observed system, so that monitors are created and attached

to new components when needed, and discarded when having outlived their use.

Practical implementations of dynamic monitoring usually rely on the observation

of certain key (e.g. object instantiation or process spawning) events from the trace

as cues to create monitors on-the-fly.

Many monitoring framework implementations employ a central in-memory stor-

age that permits them to keep track of all the local monitors in existence, e.g. the

tool in [19]. Typically, this storage takes the form of a map that maintains an

association between the object or component unique identifier and the monitor,

as this allows the framework to instantly access monitors as required. To achieve

efficiency, these data structures are also often appropriately indexed. Depending on

the type of algorithm used to process trace events, the framework either maintains

the entire monitor instance in the data structure, or simply the present value of the

monitor state (see [13, 36] for details). Some implementations also use this data

structure to determine when monitors ought to be garbage collected.

Dynamism makes it possible to express certain properties that cannot be speci-

fied using a static approach, simply because one would not know in advance what

target system components are created at runtime. For instance, while it is very

easy to specify local properties over the Ranch acceptors from Chapter 5, specifying

local properties over the Ranch protocol handlers is not easily achieved. Dynamic

monitoring makes it possible to handle both cases in the same manner. With proper

garbage collection, dynamic monitoring can also maintain small overall overheads in

cases where the size of the monitored system scales down in periods of low activity.

84

Chapter 6. Towards Dynamic Local Monitoring

6.2 Implementation Challenges

An implementation of dynamic local monitoring targeting process-oriented scenar-

ios needs to consider multiple aspects that determine how the framework can be

developed. Dynamic trace localisation can be tackled using two methods. In an

application-level approach, the monitoring framework extracts events from the global

trace, and based on some routing scheme, emulates local traces by forwarding events

to individual monitors (see [13, 17, 36]). In a language framework-level approach,

the monitoring framework relies directly on the native tracing mechanism offered

by the language in order to achieve real localisation at the framework level. For

instance, the local monitoring solution presented earlier in Chapter 4 uses the latter

technique.

The algorithm presented in this chapter also uses language framework-level

tracing to implement dynamic local monitoring. This approach involves processing

the trace, and gradually bifurcating it into smaller subtraces as new monitors are

created. Initially, a root tracer t1 is subscribed to the global trace l1. This observes

the trace for occurrences of process spawn events that arise when new processes are

created by the target system being monitored. When such an event is encountered,

the root tracer instantiates a second child tracer t2, unsubscribes it from the parent

trace l1, and resubscribes it to a freshly created local trace l2 that is only associated

with the newly spawned target system process. The child tracer t2 then handles

its local trace l2 in the same manner as done by its parent tracer t1, such that if

a spawn trace event is observed on l2, child tracer t2 reacts by instantiating a new

(grand) child tracer t3, unsubscribing it from its local trace l2 and resubscribing it

to a freshly created local trace l3, and so forth. Progressively splitting parent traces

into smaller child (local) traces as described gives rise to a tree of tracers, each with

its own local trace that is independently managed.

There are two salient points that need to be considered in view of the above

algorithm. First, tracers (and correspondingly, monitors) are not created for each

spawn event encountered in the trace, but only for spawn events that are relevant.

85

Chapter 6. Towards Dynamic Local Monitoring

Relevant spawn events are those attributed to system processes that are targeted by

local formulae specifications. Second, unsubscribing child tracers from the parent

trace and resubscribing them to their own local trace ensures that each trace event

produced by the monitored system appears once in any of the existing local traces,

i.e., is processed by just one tracer. The Erlang native tracing mechanism prevents

duplicate trace messages from ever occurring by allowing only one tracer to be

subscribed with a process trace at any point in time.

6.2.1 Trace Event Loss

Section 4.2 discussed that in order to prevent trace event loss, tracers should be

subscribed with the Erlang VM before the system components that require moni-

toring are started. A similar manifestation occurs in the dynamic local monitoring

algorithm described above. The issue arises at the point where a newly instantiated

child tracer is unsubscribed from its parent trace and resubscribed to its own local

trace. At the instant when the child tracer is not subscribed with neither the parent

trace nor its own local trace, the target system component may forge ahead, and

any trace events that could have possibly been elicited from this component are

lost because no tracer is set to receive them. This is addressed using one of the two

approaches below:

• Process Suspension: Suspending the system process being monitored before

the newly instantiated child tracer is switched from the parent trace to its own

local trace, prevents said process from actioning any new trace events. Paused

processes are however still able to receive messages in their mailbox due to

the asynchronous communication model adopted by actor-based frameworks.

Message deposits raise trace events, even though deposited messages are not

consumed by the process. In view of this, process suspension is only partially

effective, although its use can reduce the loss of trace events by a significant

amount;

86

Chapter 6. Towards Dynamic Local Monitoring

• Atomic Switch Between Traces: Unsubscribing the child tracer from the

parent trace and resubscribing it to its own local trace using a single atomic

operation mitigates the possibility of event loss entirely. Yet, this solution

depends wholly on whether the language framework being used offers such an

API call.

6.2.2 Trace Event Routing

When a child tracer is being instantiated on account of a spawn event observed

in the trace, the corresponding target system process that instigated the event

continues with its execution. Prior to subscribing to its own local trace, all trace

events resulting from the executing monitored process are directed to the parent

tracer’s mailbox instead of the child tracer’s mailbox (see Section 2.4.1). As soon

as the child tracer subscribes to its local trace however, the delivery of trace event

messages switches from the parent tracer’s mailbox to the child tracer’s mailbox.

The aftermath of this transaction results in the parent having a portion of the

trace events that should have been delivered to the child tracer, whereas the child

tracer is now the one actively receiving trace events from its local trace. To preserve

the temporal order of trace messages and guarantee that the child tracer consumes

trace events in the same order as intended by the language framework, the following

trace event delivery scheme is used:

1. The parent tracer forwards all the trace event messages that were destined

for child tracer to the child tracer’s mailbox. Forwarded trace event messages

are marked with a high priority tag in order to inform the child tracer that

these are to be processed first;

2. Once all the relevant trace event messages have been forwarded to the child

tracer, the parent tracer also forwards a special stop marker which denotes

the end of the trace event message stream. Going forward, the parent tracer

is no longer responsible for delivering trace events to the child tracer;

87

Chapter 6. Towards Dynamic Local Monitoring

3. The child tracer consumes all high priority messages in the order these were

enqueued in its mailbox. To be able to distinguish between the high priority

events forwarded to it by the parent tracer and the trace events being actively

deposited into its mailbox (from the local trace), the child tracer employs

selective message reception (see discussion in Section 4.2);

4. As soon as the stop marker is encountered, the child tracer starts processing

its own local trace event messages currently (accumulating) in its mailbox.

Parent tracer processes can instantiate an arbitrary number of child tracer

processes. In order to ensure the correct delivery of trace event messages to child

tracers, (parent) tracer processes maintain a routing table that is consulted before

messages are forwarded. If for some message being handled, an entry is found inside

the routing table, said message is forwarded to the immediate descendant tracer,

otherwise, the message is handled by the parent tracer itself. The immediate child

tracer performs the same routing operation, and based on the table’s contents,

either forwards the trace event to its immediate descendant or handles it itself. This

indirect forwarding of trace messages from one tracer to the next means that in

the worst case scenario, trace messages intended for some tracer situated in the

extremities of the tracer tree need to go through all of its ancestors. This rarely

happens in practice because newly created tracers are almost always instantly

subscribed to their local trace, and only minimal forwarding takes place.

It is interesting to note that in spite of the fact that the dynamic local monitoring

algorithm described relies on the native functionality offered by the the language

framework, an application-level form of trace localisation is also employed. This is

required to mitigate the issues that arise from the concurrent execution of processes.

6.2.3 Routing Table Management

The routing table maintained within each tracer underpins the trace event forward-

ing algorithm described above. It consists of a list of pairs where the key corresponds

88

Chapter 6. Towards Dynamic Local Monitoring

to the monitored process PID, and the value, to the tracer process PID. Entries in

the table are added when relevant spawn events are encountered in the trace being

observed, and removed when stop messages are sent by the current (parent) tracer

to some child tracer. This is on account of the (parent) tracer having fulfilled its

role as a router for the particular child tracer, which is now capable of extracting

trace events from its own local trace. Correct maintenance of the routing table is

essential not only because it dictates the manner in which trace event messages

are forwarded from one tracer to the next, but also because of its role in managing

garbage collection.

6.2.4 Garbage Collection

Tracers can exist in one of two states: active or passive. Active tracers serve the

dual purpose of (i) routing trace event messages to other child tracers, and simul-

taneously, (ii) extracting events from the local trace and directing these to their

attached monitor. Active tracers are switched irreversibly to passive mode once

their attached monitor terminates (either by crashing or by flagging a detection).

Garbage collecting unused tracers depends on their state and whether their internal

routing table is empty. Passive tracers with an empty routing table can be safely

garbage collected because these serve neither routing nor monitoring purposes. On

the other hand, passive tracers with a non-empty routing table still need to fulfil

their responsibility as routers to other tracers. However, each time the routing table

is swept (i.e., when a stop event is sent to some child tracer), the garbage collection

mechanism runs to determine whether the tracer ought to be discarded or retained.

The dynamic local monitoring algorithm description given above hardly ever

mentions monitors. This is because localisation concerns itself with the correct

placement of tracers, these, being the main devices upon which the dynamic and

local aspects of monitoring rest. Monitors attached to tracers are merely trace

consuming machines, agnostic of the manner with which trace events are extracted

89

Chapter 6. Towards Dynamic Local Monitoring

from the target system. Rather, their function makes sense only when considered

in the broader context of tracers and the way these are implanted into the target

system.

6.3 A Preliminary Proof of Concept

A proof of concept implementation of the dynamic local monitoring algorithm

described above is tackled next. To adequately adapt the generic algorithm for

Erlang use, a number of design choices were made; these are briefly examined

below:

• Monitor Loading: A load specification scheme similar to the one in Sec-

tion 4.2 is used to associate local monitors with Erlang function specifications.

Erlang function specifications take the form of the tuple {M, F, A}, where M

denotes the module name, F, the function name, and A, the list of arguments

passed to F. This is required since spawn trace events generated by Erlang

contain the {M, F, A} tuple used to spawn the processes. Comparing the ob-

served spawn event contents against {M, F, A} entries contained in the load

specification enables the tracer to determine whether the event is relevant.

Relevant spawn events result in the creation of new child tracers;

• A Lossy Implementation: Erlang does not provide an appropriate BIF

that permits the atomic trace switch discussed in the previous section to

be affected. Instead, the implementation uses process suspension. Suspended

processes are effectively blocked from executing, and are therefore prevented

from initiating trace events intentionally. The only exception are receive

events, which can still be observed in the trace if some message is delivered

to the traced process’ mailbox. Though process suspension does not achieve

a fully lossless implementation, it appropriately handles all the possible types

of Erlang trace events, save for receive;

90

Chapter 6. Towards Dynamic Local Monitoring

• Tracing Spawned Processes Automatically: Monitored processes can

themselves spawn other child processes. Depending on the tracing scenario,

one may require that these newly spawned child processes are also traced.

The implementation achieves this using Erlang’s set_on_spawn trace flag

that permits newly spawned child processes to inherit their parent process’

trace flags. This is convenient for two reasons. First it automates the job

of manually setting trace flags on each spawned process, and second, trace

events initiated by the spawned child processes are still directed to the parent

process tracer (see Section 2.4.1). In the dynamic local monitoring described

above, parent tracers depend on having access to a trace that contains all of

the events being generated by a particular subsystem or component (i.e., not

necessarily a single process) in order to determine when to split the trace into

smaller subtraces.

6.3.1 An Example

The following example illustrates how dynamic local monitoring works when em-

ployed to monitor a simple system consisting of four processes: A, B, C and D.

Process A acts as system’s entry point from which all the other processes are

spawned according to the assumed spawn order shown below:

1. Process A spawns B first;

2. Then it spawns process C;

3. Finally, process B spawns D.

Out of these four processes, C is not monitored, while the rest are monitored

according to the following load specification:

load_spec = [{{Ma, Fa, Aa}, Mona}, {{Mb, Fb, Ab}, Monb}, {{Md, Fd, Ad}, Mond}]

Figure 6.1 shows the final configuration of the monitored system that is attained

after all the processes have been launched as per the order given above. Although

91

Chapter 6. Towards Dynamic Local Monitoring

the monitors are not shown in the figure, these are actually attached to their

corresponding tracers and started once the latter are subscribed to their respective

local traces. The configuration also includes the launcher component encountered

earlier in Section 4.2; this is responsible for initialising the dynamic local monitoring

algorithm, and starting the system as follows:

1 The launcher sets up the root tracer Trcl;

2 Then, it launches process A;

3 A spawn event with {Ma, Fa, Aa} is sent to Trcl;

4 Trcl reads the spawn event with {Ma, Fa, Aa}, queries load_spec, finds a match

and instantiates a new tracer Trca for process A;

5 Process A is paused while Trca is unsubscribed from Trcl’s trace, and is

resubscribed to its own local trace. A is then resumed. Tracer Trcl no longer

receives trace events for process A;

6 Process A spawns B;

7 A spawn event with {Mb, Fb, Ab} is sent to Trca;

8 Trca reads the spawn event with {Mb, Fb, Ab}, queries load_spec, finds a match

and instantiates a new tracer Trcb for process B;

9 Process B is paused while Trcb is unsubscribed from Trca’s trace, and is

resubscribed to its own local trace. B is then resumed. Tracer Trca no longer

receives trace events for process B;

10 Process A spawns C;

11 A spawn event with {Mc, Fc, Ac} is sent to Trca. This event is not found inside

load_spec, and no tracer is instantiated for C;

12 Process B spawns D;

92

Chapter 6. Towards Dynamic Local Monitoring

Launcher

Trcl

A

Trca

B

Trcb

C

D

Trcd

spawn

spawn

spawn

spawn

extracts

extracts

extracts

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 6.1: The final process configuration of the monitored system after dynamic
local monitoring is applied.

13 A spawn event with {Md, Fd, Ad} is sent to Trcb;

14 Trcb reads the spawn event with {Md, Fd, Ad}, queries load_spec, finds a

match and instantiates a new tracer Trcd for process D;

15 Process D is paused while Trcd is unsubscribed from Trcb’s trace, and is

subscribed to its own local trace. D is then resumed. Tracer Trcb no longer

receives trace events for process D.

The reader should note that although the monitored processes are spawned

in the order assumed above, different interleavings can occur in a real execution.

For instance, while Trcl is busy processing the spawn event sent to it from process

A, the latter may have already spawned processes B and C, in which case, trace

event routing is applied (see discussion in Section 6.2) to resolve the issue. This

example was chosen for elucidative purposes because it portrays the simplest, most

straightforward interleaving scenario.

6.4 Conclusion

Dynamic local monitoring makes it possible to specify properties over systems whose

number of components can only be determined at runtime. The generic algorithm

93

Chapter 6. Towards Dynamic Local Monitoring

described in this chapter attempts to address this in the context of concurrent

actor-based systems. A preliminary proof of concept implementation in Erlang was

discussed, followed by a demonstrative example that shows how the algorithm works

in practice.

There are a number of points which have not been satisfactorily explored due to

time constraints. Chief among them is a detailed study of the performance overheads

that are induced when dynamic local monitoring is used, and how these compare

with the results obtained in Chapters 4 and 5. It would also be interesting to come

up with a number of tests that determine the extent to which the algorithm is lossy

w.r.t. receive trace events that may be potentially missed when a tracer switches

from the parent trace to its local trace. Other design improvements have yet to be

considered, whereas the overall implementation may require further refinement.

94

7. Conclusion

The material presented in this dissertation is motivated by the need to address

the scalability, rigidity and performance issues that arise when a global monitoring

strategy is employed in concurrent scenarios. This intent takes the form of a thor-

ough study that explores how these shortcomings can be mitigated if a localised

monitoring approach is adopted instead. Although this investigation is by no means

the first to suggest the use of localisation to monitor the behaviour of component-

based systems (see Section 7.2), its applicability and advantages have never been

investigated.

This work also centres on the benefits that may be gained if the task of runtime

monitoring is approached from a modular stance. Particular focus is placed on the

level of effectiveness with which a localised approach can be employed to monitor

various component-based architectures using an online, asynchronous strategy. The

analysis conducted in this report provides a detailed comparison between local and

global monitoring, as a means to better understand and assess how the benefits

attributed to local monitoring outweigh those of its global counterpart.

The contributions of this work vis-à-vis the objectives and assessment criteria

presented in Section 1.2 are thus:

1. The implementation of prototype RV tool that synthesises asynchronous local

and global monitors from safety and co-safety formulae specified using the

formalism in Chapter 3;

95

Chapter 7. Conclusion

2. A study on the effectiveness of local monitoring. In particular, the technique

(i) makes it possible to write small, well-structured and manageable formulae

that promote understandable and maintainable specification scripts which are

less likely to suffer from re-factoring in cases where new components are added

to the system under scrutiny, (ii) promotes fault tolerance through the syn-

thesis of isolated monitors that help achieve a functionally segregated system,

(iii) has a lower performance impact when compared to global monitoring

on the basis of memory consumption, CPU utilisation and system response

time. The results also show that local monitoring is most effectively applied

on components that do not interact with one another;

3. A qualitative and quantitative appraisal of a real-world application of local and

global monitoring that corroborates the results obtained in Contribution 2;

4. The preliminary design of an algorithm that extends local monitoring to

dynamically instantiated system components.

The applicability of the material presented in this dissertation is not limited

to the host technology where the experiments were conducted, nor is it bound to

the specification logic used. Rather, these findings should be regarded from an

implementation-agnostic perspective, making them applicable to any concurrent

scenario where components can be delineated into subsystems that can be separately

traced. For instance, the conclusions obtained in this study would equally hold if

the component-based system under study is developed in Scala and analysed using

local monitors synthesised from LTL formulae.

The same benefits gained from localisation should also be enjoyed in a distributed

setting. Local monitors dispersed over multiple (remote) locations function in isola-

tion, as the extraction of system trace events is conducted locally by each monitor

on site. As in the centralised case, local monitors are spared the communication

overheads that afflict global monitoring approaches. The advantages enumerated in

Contribution 2 above should thus be retained, for the most part.

96

Chapter 7. Conclusion

Before concluding, there are a couple of points that merit the reader’s con-

sideration. First, attention should be drawn to the fact that all the quantitative

experiments presented in this work employ the monitors introduced in Chapter 3.

As explained earlier, continuous formula unfolding causes these monitors to grow

increasingly larger — a consequence attributed to the lack of a suitable garbage

collection mechanism. Despite the fact that this shortcoming afflicts both local

and global monitors, the latter may, in cases, suffer more from this because global

specifications tend to be quite large when compared to their local counterparts.

While this is best kept in mind when interpreting the results rendered on the plots

in Chapters 4 and 5, it in no way impinges on the conclusions drawn from the

study.

Second, although the case study in Chapter 5 did not consider the dynamic

scenario wherein Ranch protocol handlers are created on demand, the conclusions

drawn from the study should mostly apply in this setting as well. At their very

essence, the static and dynamic flavours of local monitoring address the logistical

problem of monitor instantiation. In the static case, monitors are attached to a

designated set of components that have been identified beforehand (see discussion

in Section 4.1), whereas in the dynamic case, monitors are instantiated for target

system components that are spawned at runtime. Regardless of the instantiation

scheme used, once a local monitor is created and subscribed with its local trace, its

behaviour is no different from that of other local monitors. However, there is one con-

dition that must be taken into account. While in static cases, monitors are created

before the target system starts (see Section 4.2), creating monitors dynamically on

demand can induce resource overhead spikes that affect the system’s performance.

Depending on the component organisation within the system under observation

and the frequency with which monitors are spawned, this may, occasionally, render

the dynamic instantiation of local monitors fractionally slower.

97

Chapter 7. Conclusion

7.1 Future Work

While the contributions presented in this work are in accordance with the original

aims and objectives outlined in Section 1.2, there are other aspects worthy of further

investigation:

Evaluation of Dynamic Monitoring Ascertaining the effectiveness of the dy-

namic local monitoring approach from Chapter 6 increases confidence in its

practical applicability. While the qualitative results obtained in Section 4.4 ap-

ply equally to this dynamic setting, its quantitative aspect must be reassessed

in order to determine how dynamically instantiated monitors affect the overall

system performance. Two possible evaluation scenarios have been identified.

In the first scenario, monitors are instantiated over long-lived components that

when created, tend to execute for relatively long periods of time (e.g. Ranch

acceptors). In the second scenario, monitors are instantiated over short-lived

components that are usually spawned to perform minute, specific tasks, after

which these are immediately discarded (e.g. Ranch protocol handlers). The

findings will make it possible to identify specific situations where dynamic

local monitoring is advantageous. Moreover, these also serve to determine

the degree of efficacy with which the lossy algorithm presented in Chapter 6

performs in practice.

Garbage Collection The dynamic monitoring algorithm already handles garbage

collection at the monitor level. This can be further optimised if redundant

processes within monitor arrangements themselves are also discarded. A previ-

ous work in [11] proposes a dynamic, online garbage collection algorithm that

re-configures the monitor hierarchy in order to eliminate redundant submon-

itors (refer to Section 3.2.2 for details on the monitor synthesis procedure),

and keep its arrangement optimal (i.e., as shallow as possible).

Distribution Localisation, as studied in this work, targets asynchronous scenarios.

The tool developed in Chapter 4 relies on non-blocking message passing and

98

Chapter 7. Conclusion

process encapsulation, making monitor interdependencies and data synchro-

nisation issues of little concern. Such an architecture fits naturally within the

constraints of distributed implementations, and one conjectures that distribu-

tion is an extension of the existing tool. This can be employed as a means to

lower the monitoring overheads further.

7.2 Related Work

The prototype implementation from Chapter 3 builds upon detectEr, a RV tool

developed as part of the work in [23]. detectEr formalises the notion of monitor

correctness and applies this in practice to synthesise concurrent runtime monitors

that are correct w.r.t. their specification. It shares a number of common aspects with

the tool developed in Chapter 3 — for instance, correctness properties are specified

using safety formulae expressed in terms of sHML, uses Erlang as a target language,

and performs asynchronous instrumentation. However, it differs in these respects:

(i) the tool in Chapter 3 considers a substantially larger syntactic monitorable subset

of µHML, making it possible to specify positive properties, (ii) supports action

patterns which complicates the modularity of the synthesis process, and (iii) also

supports localised monitors, unlike detectEr which is limited to global monitoring.

Trace localisation is approached from a different angle in the work presented

in [29]. Instead of relying on the native trace event extraction mechanism provided

by the language platform, the authors achieve locality using a technique called

parametric trace slicing [13, 36]. This method perceives events in the execution trace

as being one of two kinds: propositional events consisting of simple event names,

e.g. open, or parametric events that include one or more associated data values, e.g.

open(“f1”). Parametric properties are specified in terms of symbolic events that

are matched to concrete event instantiations from the trace by binding values in

the concrete events to parameters in the symbolic events. In practice, parametric

specifications are commonly used, especially in languages where properties need to

99

Chapter 7. Conclusion

be specified over instances of some unit of encapsulation (e.g. objects in Java, actors

in Erlang). At a conceptual level, slicing works by employing parametric binding

to chop the parametrised input trace into smaller propositional subtraces based on

the data values in events. Each subtrace is then consumed by separate, dedicated

monitors that process propositional events from these localised traces. For example,

the property “an open file event is followed by a close file event”1 specified in terms

of the parametric regular expression (open(f).close(f))* slices the parametric

trace open(“f1”).open(“f2”).close(“f1”) into the following two propositional

subtraces: open.close and open according to the binding of parameter f with the

event parameter values “f1” and “f2” respectively. The first subtrace satisfies the

property, whereas the second does not. Parametric trace slicing prompts flexibility

by effectively decoupling the parameter binding process from property checking,

although, using a native tracing mechanism as done in Chapter 4 achieves true

trace segregation that is managed at a lower abstraction level, namely the language

framework-level. One should not confuse slicing with extraction: the former routes

parametric events from the central trace to subtraces, whereas the latter may choose

to hide or withhold certain events from being delivered to the monitor.

JavaMOP [29], a RV tool targeting Java applications, relies on parametric trace

slicing to efficiently conduct monitoring on localised traces. It extracts trace events

from applications through the use of AspectJ. Specifications in JavaMOP consist of

two parts: the part that defines the events, and the part that declares correctness

properties over these events. The tool developed in this dissertation distinguishes

itself from JavaMOP in the following: (i) it synthesises asynchronous monitors,

whereas JavaMOP employs synchronous monitors, (ii) the flavour of asynchronous

monitors employed requires minimal instrumentation, as opposed to a fully-fledged

AOP approach as in JavaMOP, (iii) concurrency requires correctness specifications

to deal with execution interleaving, unlike in JavaMOP, and (iv) while the tool in

Chapter 3 is limited to detections only, JavaMOP permits the user to specify optional

1The example is adapted from [7].

100

Chapter 7. Conclusion

handling code that is invoked when violations or validations are encountered.

Parametric trace slicing suffers from three shortcomings that limit its expres-

sivity [7]. First, parametric events in the same property cannot be associated with

different lists of variables (e.g. (open(f).close(g))*), because trace slicing as-

sumes unique parameter bindings when creating subtraces. Second, it also assumes

that all parameters in an event participate in slicing, thereby fixing their values

once these are bound with events from the trace (e.g. for the event write(f, bytes),

variable f should remain fixed while bytes must be permitted to become free once

the write trace event is processed, as this makes it possible to handle multiple

write events with different byte content written to the same file). Third, it also

implicitly assumes universal quantification, meaning that the trace is sliced for each

value that becomes bound to parameters in the property.

The work in [7] introduces a specification formalism called Quantified Event Au-

tomata (QEA) that addresses these deficiencies. A QEA can be thought of as a pair

consisting of a list of quantified variables and an event automaton. An event automa-

tion is a FSM instantiation whose transitions are labelled with parametric events,

and optionally, guards and assignments. Parameters specified inside the automa-

ton’s transition labels are bound if they also appear in the list of quantified variables

in the automaton. Quantified variables indicate that an automation instance is to

be created for each variable binding, while variables that are not quantified (i.e.,

free) denote placeholders that are local to each automation instance. To illustrate,

if the file name variable f is quantified in a QEA specified over the parametric trace

write(“f1”, “abc”).write(“f1”, “def”), a single event automaton is created for

the file “f1” and the local (free) variable bytes is bound two times, first with “abc”,

and then with “def’. Guards and assignments can manipulate the values in both

quantified and free variables as required.

MarQ [34, 33] is a preliminary implementation that extends parametric trace

slicing through the use of QEA. Like JavaMOP, it targets systems developed in Java,

and produces synchronous dynamic monitors that are weaved into the target appli-

101

Chapter 7. Conclusion

cation using AspectJ. While the trace localisation technique developed in Chapter 4

implicitly handles universal quantification, like MarQ, it can also emulate, to an

extent, existential quantification using the pre-binding operator @ from Chapter 32.

In addition to the differences between the tool presented in this work and JavaMOP,

MarQ adds the following: (i) variable assignments in QEA modify mutable variables

that are not thread-safe and therefore, require proper synchronisation when used

in multithreaded scenarios, and (ii) in addition to online monitoring, MarQ also

supports offline monitoring of traces stored in XML and CSV files. At the time of

writing, QEA specifications in MarQ must be built manually in Java code using

the libraries provided for this purpose. Additionally, monitors produced from the

QEA specifications must be manually implanted into the system using hand-coded

AspectJ aspects. These shortcomings will be mitigated in future versions of MarQ.

Larva [19] is another MOP-based tool targeting Java applications. In Larva, cor-

rectness properties are written using a textual representation of Dynamic Automata

with Timers and Events (DATEs)[18], and like JavaMOP, divides specification scripts

into two parts: one that defines events, and one that declares properties on these

events. Events are defined using fragments of the AspectJ pointcut syntax that tar-

gets join points in the application. Larva synthesises synchronous monitors which

are weaved into the target system using AOP techniques. Apart from global prop-

erties, Larva, similar to JavaMOP and MarQ, also supports the specification of local

properties through its use of the foreach construct. Specifications using foreach

are parametrised with the type of the Java language class that is to be monitored

locally, in order to instruct Larva to dynamically instantiate monitors for each of

the targeted object at runtime. This mechanism makes it possible to write local

specifications that permit different monitors to target the same event; contrastingly,

in the monitoring approach developed in Chapter 4, events from the local trace can

only be read by a single receiver monitor. In addition, Larva also supports monitor

2For this to be successful however, the registered name of the Erlang process to be monitored
must be known.

102

Chapter 7. Conclusion

communication via global variables and broadcast channels. Besides the mentioned

differences, the contrasts drawn earlier when discussing JavaMOP and MarQ also

apply to this comparison of Larva and the tool developed in this work.

JavaMOP, MarQ and Larva target object-oriented frameworks, as opposed to

process-oriented frameworks, where each component is assigned its own thread of

execution. ELarva [17], an Erlang port of Larva, was created with the intent of

bridging this gap, as well as to expand the Larva tool set to a process-oriented sce-

nario. It relies on the native tracing mechanism provided by Erlang (see Chapters 2

and 3), rendering the monitoring effort totally asynchronous, while disposing of

the instrumentation component that was previously required to elicit trace events.

The foreach construct semantics are reformulated so that monitors target pro-

cess instances instead of objects. Unlike the technique developed in Chapter 4,

where localisation is achieved by subscribing to subtraces at the Erlang VM-level,

ELarva relies on a centrally-managed singleton tracer that extracts trace events and

demultiplexes between all local monitor instances in order to direct these events

as required. Although this scheme handles the problem of dynamic local monitor

creation easily, the additional processing induces unnecessary overheads (e.g. bot-

tlenecks) that can be altogether avoided if local monitors are directly subscribed

to subtraces. Furthermore, funnelling trace events through a central process runs

the risk of introducing a single point of failure that can adversely affect the entire

monitoring endeavour. This contrasts with a truly localised strategy where failures

in some monitor or monitored component are contained to the affected subsystem

(see conclusion in Chapter 4). Similar to its Java counterpart, ELarva also supports

monitor communication, albeit in Erlang, this is given a point-to-point interpreta-

tion, in order to reduce the amount of traffic that is generated with broadcast-style

messaging used by Larva.

Localisation requires the specifier to perceive the target system as a collection

of components, each having its own local behaviour that contributes towards the

system’s global behaviour. In [9], and later in [16], the authors present an approach

103

Chapter 7. Conclusion

where global LTL formulae are monitored locally over subtraces. Their work con-

centrates on how global specifications can be verified in the absence of a central

decision making point that asserts whether the target system’s behaviour is violated

or validated. To achieve this, the authors propose a decentralised algorithm that can

effectively rewrite some global LTL formula into smaller subformulae that are then

monitored over local traces. Dependencies between distributed local formulae are

handled by enabling monitors to communicate partial evaluations to other moni-

tors, thereby progressively evaluating individual subformulae until a global verdict is

reached. Like the decentralised approach developed in this dissertation, efficiency in

terms of performance gains is also central in [9]. There are a number of differences

that distinguish both approaches however: (i) this work adopts a granular view

focusing on different target system components, whereas the authors in [9] perceive

the system from a global standpoint, (ii) monitors work in complete isolation, as

opposed to the ones in [9] which depend on communication channels to be able to

evaluate formulae, (iii) while the presented work focuses on asynchronous monitor-

ing, the technique applied in [9] targets synchronous systems, and (iv) synchronous

monitoring is spared the interleaving issues that would make a global specification

approach unmanageable in concurrent settings (see Chapter 4). In contrast to the

dynamic RV tools discussed above, the one in [9] assumes a static system architec-

ture wherein local monitors are deployed before the verification process commences.

This is similar to the approach developed in Chapter 4, which also requires knowl-

edge of the target system components that are to be monitored before the actual

monitoring can be performed.

Before concluding, there are a number of general comments that ought to be

made in view of the above discussion. The aforementioned tools, together with the

one developed in this dissertation, tackle online RV, and present different strategies

by which monitoring can be rendered more efficient. As already seen in Section 4.5,

efficiency and performance are of the utmost importance in online approaches, as

these ultimately determine the tools’ usability in practical settings. On the one

104

Chapter 7. Conclusion

hand, achieving localisation at a language framework level (e.g. using Erlang’s

native tracing API) increases efficiency, addresses fault tolerance, and removes the

burden of having to manage the specifics of multiple traces using manual means.

On the other hand, an application-level approach (e.g. parametrised trace slicing)

offers portability and the possibility of using the RV tool on platforms that do not

offer decentralised tracing facilities. Efficiency also poses challenges when designing

dynamic monitoring tools, as these need to take into account how and when monitors

are to be created and garbage collected. In this regard, while the task of dynamically

monitoring synchronous systems can be handled non-trivially, the asynchronous

and non-deterministic nature of concurrent systems makes this problem even harder

to address.

105

A. Refining the Monitor Synthesis

The monitor syntax from [21], together with the synthesis function L−M from mHML

to monitors is shown in Figure A.1. A refinement of the synthesis function is

required in order to make the implementation of the RV tool in Chapter 3 capable

of producing monitors that can correctly handle detections. Specifically, there are

cases where the synthesis function in Figure A.1 produces monitors with non-

deterministic behaviour.

Example A.0.1. The sHML formula ϕ8 describes the property that “after any

sequence of requests and responses, a request is never followed by two consecutive

responses”, i.e., the subformula [resp] [resp]ff. The synthesis function in Figure A.1

translates ϕ8 to the monitor process m8.

ϕ8 = maxX.
(
[req] ([resp]X ∧ [resp] [resp]ff)

)
m8 = recx.

(
req.(resp.x + resp.resp.no)

)

Monitor m8 may exhibit the following behaviour:

recx.
(
req.(resp.x + resp.resp.no)

)
τ−→ · req−→ resp.m8 + resq.resp.no

at which point, upon analysing action resp, it may non-deterministically transition

to either m8 or resp.no. The latter case can raise a rejection if it receives another

106

Appendix A. Refining the Monitor Synthesis

Syntax

m,n ∈Mon ::= v | α.m | m + n | recx.m | x

v, u ∈ Verd ::= no | yes | end

Dynamic behaviour

mAct
α.m

α−→m
mRec

recx.m τ−→m[rec x.m/x]
mVer

v
α−→v

mSelL m
µ−→m′

m + n
µ−→m′

mSelR n
µ−→n′

m + n
µ−→n′

Monitor synthesis

LffM def= no LttM def= yes LXM def= x

L[α]ψM def=
{
α.LψM if LψM 6= yes
yes otherwise L〈α〉ψM def=

{
α.LψM if LψM 6= no
no otherwise

Lψ1 ∧ ψ2M
def=

 Lψ1M if Lψ2M = yes
Lψ2M if Lψ1M = yes
Lψ1M + Lψ2M otherwise

Lψ1 ∨ ψ2M
def=

 Lψ1M if Lψ2M = no
Lψ2M if Lψ1M = no
Lψ1M + Lψ2M otherwise

LmaxX.ψM def=
{

recx.LψM if LψM 6= yes
yes otherwise LminX.ψM def=

{
recx.LψM if LψM 6= no
no otherwise

Figure A.1: The monitor syntax and dynamics, and the compositional synthesis
function (adapted from [21]).

resp event but the former case, i.e.,m8, does not — this results in a missed detection.

Although this behaviour suffices for the theoretical results required in [21], it is not

ideal from a practical standpoint. The problem is on account of a limitation in the

choice construct semantics, m + n, which forces a selection between submonitor m

or n upon receiving an event to analyse. �

This problem is solved by replacing the external choice constructs with a parallel
monitor composition construct, m × n that permits both m and m to process the
event without excluding one another. The semantics of the × combinator are given
in Figure 3.1. For completeness’ sake, the symmetric versions of the rules omitted

107

Appendix A. Refining the Monitor Synthesis

in Figure 3.1 are given here (n.b. mPar is restated for the reader’s convenience).

mPar m
α−→m′ n

α−→n′

m × n
α−→m′ × n′

mParR m
αX−→ m

τX−→ n
α−→n′

m × n
α−→n′

mParSL m
τ−→m′

m × n
τ−→m′ × n

mParVR
m × v

τ−→v

The synthesis function J−K shown in Figure 3.2 is defined by structural induction
on the structure of the formula. Most cases are identical to those of L−M in Figure A.1
with the exception of the two cases below, substituting the choice construct for the
parallel construct:

Jψ1 ∧ ψ2K
def=


Jψ1K if Jψ2K = yes

Jψ2K if Jψ1K = yes

Jψ1K × Jψ2K otherwise

Jψ1 ∨ ψ2K
def=


Jψ1K if Jψ2K = no

Jψ2K if Jψ1K = no

Jψ1K × Jψ2K otherwise

The two monitor synthesis functions correspond in the sense of Theorem A.0.1.

In [21], verdicts are associated with logic satisfactions and violations, and thus

Theorem A.0.1 suffices to show that the new synthesis is still correct.

Theorem A.0.1. For all ψ ∈ mHML, LmM α1−→ . . .
αn−→ v iff JmK α1−→ . . .

αn−→ v.

Proof. By induction on the structure of ψ. Most cases are immediate because the

resp. translations correspond. In the case of ψ1 ∧ ψ2, where the synthesis yields

Lψ1M + Lψ2M, a verdict is reached only if Lψ1M
α1−→ . . .

αn−→ v or Lψ2M
α1−→ . . .

αn−→ v.

By I.H. the following is obtained Jψ1K
α1−→ . . .

αn−→ v (or Jψ2K
α1−→ . . .

αn−→ v), and

is sufficient to show that Jψ1K × Jψ2K
α1−→ . . .

αn−→ v. A dual argument can be

constructed for the implication in the opposite direction.

Example A.0.2. Applying the synthesis function from Figure 3.2 on ϕ8 (see
Example A.0.1) results in a monitor that exhibits only the following behaviour:

recx.
(
req.(resp.x × resp.resp.no)

) τ−→ · req−→ resp.m8 × resq.resp.no resp−→ m8 × resp.no resp−→ no

Submonitors are now permitted to evolve together without excluding one another

108

Appendix A. Refining the Monitor Synthesis

and actions can be processed by independently. Transition m8 × resp.no resp−→ no

shows that when the action resp does not match the one expected by m8 (i.e.,

req), the submonitor is terminated, while resp.no is permitted to evolve into no,

according to mParR above. �

109

B. Translation From mHML to

Erlang Monitors

The remaining monitor constructs from Table 3.1 introduced in Section 3.2.3 are

shown in Table B.1.

Monitor construct formula.erl module code

recx.JψK
1 mon_rec(Var, Psi) ->
2 fun(Env) ->
3 Psi([{Var, Psi} | Env])
4 end.

x

5 mon_var(Var) ->
6 fun(Env) ->
7 Psi = look_up(Var, Env),
8 Psi(Env)
9 end.

no
10 mon_no() ->
11 fun(_Env) ->
12 sup ! ff
13 end.

yes
14 mon_yes() ->
15 fun(_Env) ->
16 sup ! tt
17 end.

end 18 mon_end() ->
19 fun(_Env) -> end.

Table B.1: The monitor constructs and their corresponding Erlang code.

110

Appendix B. Translation From mHML to Erlang Monitors

Recursion for the variable x is encoded by a new mapping that is created inside

the map environment Env in line 3. The variable x itself encodes recursive unfolding

in mon_var, where a monitor is first retrieved from the map environment using the

function look_up (line 7), and re-instantiated with the same environment Env (line

8). Constructs no and yes are encoded by two functions that each communicate the

monitoring verdict by sending ff and tt messages respectively to the supervising

top-level monitor sup (lines 12 and 16). The inconclusive verdict end is encoded

by an empty function that terminates the monitor gracefully (line 19).

Table B.2 shows the remaining synthesis function subcases from Table 3.2 for

handling sHML translations. For formula JmaxX.ψK, the translation performs the

string processing required to insert a call to the function mon_rec (lines 5 - 6). It

passes the recursion variable Var obtained from the parse tree (line 1), together

with the submonitor source code string Mon generated from the parsed subtree of

Psi (line 2), as arguments. The recursive variable X is translated into a call for the

mon_var (line 9) function from Table B.1, whereas JffK and JttK are translated into

calls for mon_no (line 11) and mon_yes (line 13) respectively. The other cases for

cHML (i.e., Jψ1 ∨ ψ2K, J〈α〉ψK and JminX.ψK) are handled in a similar manner.

Synthesis function subcase compiler.erl module function

JmaxX.ψK def={
recx.JψK if JψK 6= yes
yes otherwise

1 synth({max, Var, Psi}) ->
2 case synth(Psi) of
3 {yes, _} -> {yes, "mon_tt()"};
4 {Tag, Mon} ->
5 {any, util:format("mon_rec(~p,~s)",
6 [Var, Mon])}
7 end;

JXK 8 synth({var, Var}) ->
9 {any, util:format("mon_var(~p)", [Var])};

JffK 10 synth({ff}) ->
11 {no, "mon_no()"};

JttK 12 synth({tt}) ->
13 {yes, "mon_yes()"};

Table B.2: The monitor synthesis function cases and their corresponding compiler
functions.

111

C. Global Monitoring for the

Ranch Protocol

Formula (C.1) expresses the positive requirement in Section 5.2, i.e., “after an

acceptor sends a connection initiation request to the ranch_conns_sup supervisor,

it either crashes or receives an acknowledgement in reply”, for a Ranch configuration

with two acceptors using a global cHML formula. As opposed to the local formula

in (5.1), the global specification needs to take into account all possible interleavings

that arise due to acceptors. Writing the formula by hand, although possible, becomes

tedious, error-prone and quickly unmanageable, as more acceptors are added. In

an effort to address this issue, all the global formulae used to benchmark Ranch in

Chapter 5 were programmatically generated. This approach was especially helpful

when testing the monitored system using formulae of different sizes (e.g. three, four,

five) in order to establish the limits of the setup being used.

To be able to distinguish between the two different acceptors, the @ pre-binding

operator is used in front of the variables for acceptors one and two, as can be seen

in (C.1). As explained earlier in Section 3.2, this instructs the monitor to bind

these variables to actual PID values before any events from the trace are consumed,

thereby allowing pattern matching to be performed against pre-populated data

values.

112

Appendix C. Global Monitoring for the Ranch Protocol

min(X,

((((〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉

〈@Acpt1 ? ConnsSup〉X

∨ 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉 〈Acpt1 stp killed〉 tt)

∨ (〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉

〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉X

∨ 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉

〈@Acpt2 ? ConnsSup〉X))

∨ ((〈Acpt1 ? ConnsSup〉 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉X

∨ 〈Acpt1 ? ConnsSup〉 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉X)

∨ (〈Acpt1 ? ConnsSup〉 〈Acpt2 ? ConnsSup〉X

∨ 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉

〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉X)))

∨ (((〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉 〈Acpt1 ? ConnsSup〉X

∨ 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉 〈Acpt2 ? ConnsSup〉X)

∨ (〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉 〈Acpt2 stp killed〉 tt

∨ 〈Acpt2 ? ConnsSup〉 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt1, Sock1}〉X))

∨ (〈Acpt2 ? ConnsSup〉 〈Acpt1 ? ConnsSup〉X

∨ 〈Acpt2 ? ConnsSup〉 〈ConnsSup ! {ranch_conns_sup, start_protocol,Acpt2, Sock2}〉X)))

)

(C.1)

113

D. Using the Tool

In this appendix, we go through the steps required to monitor an existing system

using the tool in Chapter 3. We start by creating a rudimentary system by borrowing

code from the tool distribution itself. Following this, we specify a simple correctness

property using sHML, and apply it to the system just created.

D.0.1 Creating the Target System

Since we do not have a test system available for this tutorial, we will quickly create

one by copying the plus_one.erl server module to serve this purpose. This will

enable us to set up a client-server system which suffices to demonstrate runtime

monitoring using our tool. Though this example is fairly basic, it embodies the

essence of how the tool should be applied; more complex properties follow the same

instructions outlined in this tutorial.

The material presented in this appendix assumes that Erlang has been set up

correctly. In addition, it also assumes that GNU make is installed on the host

system: OSX users can acquire make by installing the XCode Command Line Tools;

Windows users can install the MinGW suite of tools. Although Linux is used, the

steps below can be replicated on any other operating system.

114

Appendix D. Using the Tool

Setting up the Erlang project

To make the development of Erlang applications straightforward, we have created a

generic makefile which we use in this guide. The following make targets are provided:

• all: Compiles the Erlang project;

• clean: Removes the Erlang .beam and temporary files;

• init: Creates the standard Erlang project structure;

• docs: Compiles the HTML documentation from Erlang source files using

EDoc;

• instrument: Synthesises and instruments the monitors into the target system,

given the HML script, target system binary directory and application entry

point.

We start by creating the target application directory which for the sake of this

example, we name, example:

duncan@term:/$ mkdir example

Navigate into the newly created example directory and download the latest

version of the aforementioned makefile using wget:

duncan@term:/$ cd example
duncan@term:/example$ wget https://bitbucket.org/duncanatt/detecter-lite\

/raw/detecter-lite-1.0/Makefile

Once the makefile is downloaded, we create the standard Erlang directory struc-

ture using the init target:

duncan@term:/example$ make init
duncan@term:/example$ ls -l
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 include
-rw-rw-r-- 1 duncan duncan 5463 May 15 16:53 Makefile
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 src
drwxrwxr-x 2 duncan duncan 4096 May 15 16:53 test

115

Appendix D. Using the Tool

example

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus_one.erl

test

(a) The example project directory tree
before compilation.

example

ebin

formula.beam

launcher.beam

log.beam

main_mon.beam

plus_one.beam

prop.beam

include

log.hrl

macros.hrl

Makefile

src

log.erl

plus_one.erl

test

(b) The example project directory tree
after compilation and instrumentation.

Instead of writing an Erlang server ourselves, we reuse the plus_one.erl module

included in the tool’s distribution. If you have not yet downloaded it, refer to

the instructions provided at https://bitbucket.org/duncanatt/detecter-lite.

For simplicity, we assume that the tool is set up in the same directory as our example

project directory. The plus_one server and its dependencies should then be copied

into the src and include directories as shown below; this results in the directory

tree in Figure D.1a.

duncan@term:/example$ cd src
duncan@term:/example/src$ cp ../../detecter-lite/test/plus_one.erl .
duncan@term:/example/src$ cp ../../detecter-lite/src/mon/log.erl .
duncan@term:/example/src$ cd ../include/
duncan@term:/example/include$ cp ../../detecter-lite/include/* .

Once all files are copied in place, the whole project can be built by invoking

make:

116

https://bitbucket.org/duncanatt/detecter-lite

Appendix D. Using the Tool

duncan@term:/example/include$ cd ..
duncan@term:/example$ make

Compiling Erlang source file: src/log.erl to ebin/log.beam
Compiling Erlang source file: src/plus_one.erl to ebin/plus_one.beam

>-------------------------------<
Build completed successfully!
>-------------------------------<

Running and Testing the Server

With the build now complete, it is time to launch and test the plus_one server. As

we have not developed a complete application, but only the server part of it, testing

will be conducted using the Erlang shell in place of a full client implementation.

The plus_one server and shell can be launched from the terminal as follows:

1 duncan@term:/example$ erl -pa ebin -eval "plus_one:start(eql)"
2
3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 [<0.2.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘eql’.
5 Eshell V7.2 (abort with Ĝ)
6 1> _

The plus_one server has been purposefully started in equal mode (using the

start up flag eql); this simulates incorrect behaviour whereby client requests sent

to the server are not incremented but merely echoed back as is. This serves us later

when we verify for the safety property in Appendix D.0.2.

For now, confirm that the server started up successfully by ensuring that the

plus_one start up log (line 4) shows up in the terminal. Once loaded, the server

can be tested by submitting requests to it using the Erlang ! (send) operator (line

7):

7 1> plus_one ! {request, self(), 1}.
8
9 [<0.33.0> - plus_one:41] - Received request with value ‘1’.

10 [<0.33.0> - plus_one:46] - Sending response with value ‘{result,1}’, Current cnt ‘1’.
11 {request,<0.36.0>,1}
12 2> _

117

Appendix D. Using the Tool

The request sent to the plus_one server identified with the registered process

name “plus_one” follows the format: {request, PID, Number }, where PID is the

Erlang Process Identifier of the sender actor (in this case, the Erlang shell), and

Number is the actual data payload, i.e., the number which the client wishes to

increment. Note that Erlang shell commands must terminate with the period symbol,

otherwise these will not be processed.

As seen in the above logs, the plus_one server receives the number ‘1’ as payload,

and replies back with a response of ‘1’ (lines 9 - 10). A correct implementation of

the plus_one server ought to have replied with a value of ‘2’, which corresponds

to the client’s request being incremented by ‘1’. To view the server’s response from

the Erlang shell and verify that an incorrect response has been indeed sent back,

invoke the flush() function to empty the shell’s mailbox (line 13).

13 2> flush().
14 Shell got {result,1}
15 ok
16 3> _

Now that we have confirmed that the server is working (incorrectly) as intended,

the Erlang shell can be closed by typing “q().” at the terminal. In the next section

we explore how the erroneous behaviour of the plus_one server can be detected

using a recursive safety property specified in sHML.

D.0.2 Instrumenting the Target System

We are now in a position to generate a simple monitor that verifies for the safety

property: “the server’s response cannot be equal to the client’s request sent to it”.

The monitor synthesised from this property should detect violating behaviour in

the plus_one server introduced in the preceding section.

Specifying the Safety Property

Properties using our tool are specified in plain text files that are processed by the

tool to produce monitors in the form of Erlang code. These, together with their

118

Appendix D. Using the Tool

dependencies, are compiled to Erlang .beam files and copied into the target system’s

binary directory. The compiler also generates a launcher module which bootstraps

the system together with the synthesised monitor. Once both are executing con-

currently, the system proceeds as usual, while the monitor continually observes the

system’s behaviour expressed in terms of the messages exchanged between it and

its environment (in this case, the Erlang shell). Upon detecting a violation, the

monitor flags it accordingly and terminates.

The safety property above can be specified by opening any plain text editor and

pasting the following sHML, saving it as prop.hml:

max(‘X’,
[Server ? {request, Client, Request}][Client ! {result, Request}] ff
&&
[Server ? {request, Client, Request}][Client ! {result, Result}] ‘X’)

Alternatively, it can be done using the terminal like so:

duncan@term:/example$ echo -e "max(‘X’,\n\
[Server ? {request, Client, Request}][Client ! {result, Request}] ff\n\
&&\n\
[Server ? {request, Client, Request}][Client ! {result, Result}] ‘X’)" > prop.hml

Either approach should result in the creation of the HML file prop.hml located

in the example directory.

The expression above uses a conjunction (&&) construct to state the possible

behaviours that are to be expected by the system. The violating behaviour stated by

[Server ? {request, Client, Request }][Client ! {result, Request }] ff spec-

ifies that a violation ought to be flagged if the server receives a request from

Client with a numeric payload of Request, and sends back to Client that very

same Request value. The recursive (non-violating) behaviour expressed through

[Server ? {request, Client, Request }][Client ! {result, Result }] ‘X’ sta-

tes that the monitor should recurse if the server receives a request from Client with

a numeric payload of Request and sends back to the same Client a different value

Result.

The term different in this context is taken to mean any value, not just the

119

Appendix D. Using the Tool

successor or predecessor of the value in Request. This is perfectly acceptable since

we are only interested in cases where the plus_one server sends the same value

in Request back to Client. It is important to take note of the differences between

the contents of Request and Result which are attributed to the values to which

these variables bind to while the trace event is being processed. Also observe the

recursion construct max(‘X’, ...), referenced by variable X in the right operand

of the conjunction.

Synthesising the Monitor

The monitor corresponding to the script created above is synthesised using the

instrument target from the application makefile, as shown below:

duncan@term:/example$ cd ../detecter-lite
duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\

app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[eql]}"

The command line arguments of instrument stand for the following:

• hml: The relative or absolute path of the plain text file containing the correct-

ness property to be synthesised;

• app-bin-dir: The target application’s binary directory base;

• MFA: The target application’s entry point function in the form of a {Module,

Function, [Arguments]} tuple, where we specified the plus_one module’s

start function passing eql as the argument, as done previously in Ap-

pendix D.0.1.

The resulting instrumented system results in the project depicted in Figure D.1b.

Note that the original target system binaries remain untouched, and the previous

plus_one server can still be run with no monitoring applied to it.

120

Appendix D. Using the Tool

Running the Monitored System

The instrumented target system can now be run using the launcher module gen-

erated by the tool as follows:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2
3 Erlang/OTP 18 [erts-7.2] [smp:4:4] [async-threads:10] [kernel-poll:false]
4 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
5 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘eql’.
6
7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula env.
11 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

Different to the logs already seen in the previous execution of the plus_one

server, we note that now, both the target system under scrutiny, as well as the

monitor for it are running in parallel. Observe that the “conjunction monitor”

mon_and (PID 〈0.40.0〉) has already spawned its two submonitors, as announced by

the log in line 11. Like before, the system can now be tested using the same request

sent from the Erlang shell (line 14):

14 1> plus_one ! {request, self(), 1}.
15
16 [<0.35.0> - plus_one:41] - Received request with value ‘1’.
17 [<0.41.0> - formula:120] - mon_nec evaluating action:
18 {recv,<0.35.0>,{request,<0.38.0>,1}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,1}}.
21 [<0.35.0> - plus_one:46] - Sending response with value ‘{result,1}’, Current cnt ‘1’.
22
23 {request,<0.38.0>,1}
24 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,1}}.
25 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,1}}.
26 [<0.41.0> - formula:67] - mon_ff matched ‘ff’ action.
27 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
28 [<0.34.0> - main_mon:113] -
29
30 Main monitor/tracer received ‘ff’ - *** Violation detected! ***
31
32 2> _

As may be gleaned from the logs above, once the trace event for {request,

121

Appendix D. Using the Tool

self(), 1} is raised by the Erlang tracing mechanism, both left (PID <0.41.0>) and

right (PID <0.42.0>) submonitors immediately acquire it from the top “conjunction

monitor” (lines 17 - 19). Next, the plus_one server computes the result and sends

it back to the Erlang shell; this causes the second trace event to be raised, and

likewise, is processed by both submonitors (lines 24 - 25). At this point, note that

while the right submonitor tries to unfold the next computation (line 27), the left

submonitor flags a violation verdict ff (line 26), which is noted by the main monitor.

As the existence of a single detection suffices for the main monitor to be able to

yield a global verdict, the monitor terminates accordingly with ff (line 30).

Running the Correct Server

Recall that we intentionally launched the plus_one server using the eql flag in

order to demonstrate how the monitor handles violations. We now re-instrument

the server and initialise it with the correct behaviour flag: lim, as shown in line

6. Note that the only difference in the instrument command lies only in the MFA

tuple that starts the server:

duncan@term:/detecter-lite$ make instrument hml="../example/prop.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[lim]}"

The plus_one server should now behave correctly and increment the numeric

payloads contained in requests sent to it by the Erlang shell.

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2
3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4
5 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘lim’.
7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:152] - mon_max adding var ‘X’ to formula environment.
11 [<0.40.0> - formula:91] - mon_and spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

122

Appendix D. Using the Tool

What happens if we try to send the same {request, self(), 1} request to the

plus_one server, as done in line 14?

14 1> plus_one ! {request, self(), 1}.
15 [<0.35.0> - plus_one:41] - Received request with value ‘1’.
16
17 [<0.41.0> - formula:120] - mon_nec evaluating action:
18 {recv,<0.35.0>,{request,<0.38.0>,1}}.
19 [<0.42.0> - formula:120] - mon_nec evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,1}}.
21 [<0.35.0> - plus_one:46] - Sending response with value ‘{result,2}’, Current cnt ‘1’.
22 {request,<0.38.0>,1}
23 [<0.41.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,2}}.
24 [<0.42.0> - formula:120] - mon_nec evaluating action: {send,<0.38.0>,{result,2}}.
25 [<0.41.0> - formula:59] - mon_id no match.
26 [<0.42.0> - formula:180] - mon_var retrieving var ‘X’ from formula env and recursing.
27 [<0.42.0> - formula:91] - mon_and spawned processes ‘<0.44.0>’ and ‘<0.45.0>’.
28 2> _

Contrary to the previous run, no violations are flagged, despite the fact that the

exact same trace events are raised by the Erlang tracing mechanism. The difference

lies only in the processing of the last event (i.e., {result, 2}) which causes the

left submonitor to terminate due to a pattern mismatch (line 25), and the right

submonitor to unfold recursively in preparation for the next trace events (line 26).

D.0.3 Co-safety Properties

The monitor synthesised previously from the safety property in Appendix D.0.2,

flags a violation whenever the server does not increment the numeric payload in

the client’s request. We saw that when a correct working server (started with the

lim flag) was monitored using this same monitor, no violations were flagged.

In this example, we consider a simple co-safety property with which the positive

behaviour of the plus_one server can be ascertained. The lim flag used to start

the server in Appendix D.0.2 imposes a limit on the number of request-response

exchanges, essentially making it a finite server. After this limit is attained, the

server accepts no subsequent client requests. We devise the co-safety property “the

server’s process limit is finally reached” to verify for this desired behaviour, and

specify it in cHML as follows:

123

Appendix D. Using the Tool

min(‘X’,
/Server ? {request, _, _}\/Client ! {stop, limit_reached}\tt
||
/Server ? {request, _, _}\/Client ! {result, _}\ ‘X’)

Note that since we do not care about the values of bound variables (as opposed

to the earlier safety property), the wildcard binder _ is used in the above specifi-

cation; although _ binds with any value, it retains none. As done previously, we

re-instrument the plus_one server system using the new cHML specification:

duncan@term:/detecter-lite$ make instrument hml="../example/prop2.hml"\
app-bin-dir="../example/ebin"\
MFA="{plus_one,start,[lim]}"

The monitor resulting from the specification file prop2.hml is again launched

in tandem with the target system like so:

1 duncan@term:/example$ erl -pa ebin -eval "launcher:start()"
2
3 Erlang/OTP 18 [erts-7.2] [source] [smp:4:4] [async-threads:10] [kernel-poll:false]
4
5 [<0.34.0> - main_mon:38] - Started main monitor for processes/PIDs [].
6 [<0.33.0> - plus_one:22] - Started PLUS ONE server with initial value ‘0’ and mode ‘lim’.
7 [<0.33.0> - main_mon:24] - System to be monitored started.
8 Eshell V7.2 (abort with Ĝ)
9 [<0.34.0> - main_mon:62] - Resolved procs [].

10 [<0.40.0> - formula:166] - mon_min adding var ‘X’ to formula env.
11 [<0.40.0> - formula:106] - mon_or spawned processes ‘<0.41.0>’ and ‘<0.42.0>’.
12 [<0.34.0> - main_mon:84] - Starting main monitor loop.
13 1> _

The behaviour of the monitor follows that of the one already seen earlier in

Appendix D.0.2: the “disjunction monitor” mon_or (PID <0.40.0>) spawns its left

(PID <0.41.0>) and right (PID <0.42.0>) submonitors upon starting, in prepara-

tion for incoming trace events (line 11). Once a sufficiently high number of client

requests (1000 in our example, line 14) are sent, the server reaches its request-

response limit of 100, and consequently, the monitor flags the property satisfaction

accordingly using tt (line 31). Note that this time, instead of sending the numeric

payload directly, we make use of the plus_one:request/1 function (line 14).

124

Appendix D. Using the Tool

14 1> lists:foreach(fun(N) -> plus_one:request(N) end, lists:seq(1, 1000)).
15 ...
16 ...
17 [<0.240.0> - formula:106] - mon_or spawned processes ‘<0.241.0>’ and ‘<0.242.0>’.
18
19 [<0.241.0> - formula:136] - mon_pos evaluating action:
20 {recv,<0.35.0>,{request,<0.38.0>,101}}.
21 [<0.242.0> - formula:136] - mon_pos evaluating action:
22 {recv,<0.35.0>,{request,<0.38.0>,101}}.
23 [<0.241.0> - formula:136] - mon_pos evaluating action:
24 {send,<0.38.0>,{stop,limit_reached}}.
25 [<0.242.0> - formula:136] - mon_pos evaluating action:
26 {send,<0.38.0>,{stop,limit_reached}}.
27 [<0.241.0> - formula:76] - mon_tt matched ‘tt’ action.
28 [<0.242.0> - formula:59] - mon_id no match.
29 [17/5/2016 20:03:25, INFO - <0.34.0> - main_mon:110] -
30
31 Main monitor/tracer received ‘tt’ - *** Satisfaction detected! ***
32
33 2> _

D.0.4 Correct Property Synthesis

We present a final example aimed at showcasing the generation of correct monitors

from mHML formulae according to the synthesis function refined in Section 3.1.

Consider the sHML formula below:

[Server ? {request, Client, Request}][Client ! {result, Request}] ff
&&
[Server ? {request, Client, Request}][Client ! {result, Request}] tt

This specifies that the “the server’s response cannot be equal to the client’s

request sent to it”, and also that “the server’s response can be equal to the client’s

request sent to it”. By virtue of the side conditions of the refined monitor synthesis

function in Section 3.1, these cases are appropriately handled and in this particu-

lar instance, the right operand of the conjunction && (equating to tt) is removed

altogether from the generated Erlang monitor, finally resulting in the following:

formula:mon_cnt(fun(Act) ->
case Act of

{recv, Server, {request, Client, Request}} ->
formula:mon_cnt(fun(Act1) ->

case Act1 of

125

Appendix D. Using the Tool

{send, Client, {result, Request}} -> formula:mon_no();
_ -> formula:mon_end()

end
end);

_ -> formula:mon_end()
end

end)

An exhaustive test suite, compiler_tests.erl located in the EUnit tests

directory within the distribution of the tool considers and tests all the possible side

conditions handled by the refined synthesis function in Section 3.1. The interested

reader is encouraged to explore these tests in order to appreciate the inner workings

of the monitor generation process.

This hands-on guide provided the general workflow that can be adopted when

specifying properties and instrumenting the corresponding monitors into existing

system implementations. Our approach is advantageous for two main reasons:

1. Instrumentation relies only on the application’s binary files, and requires no

access to the system source code. This stems from the fact that the collection

of trace events employs exclusively the native tracing functionality provided

by Erlang;

2. The synthesis process places the compiled monitor files and their dependencies

alongside the original target system binary files, leaving these untouched. This

makes it possible to run both the uninstrumented and instrumented versions

of the target system either by invoking it directly or through the launcher

module respectively.

As seen throughout this appendix, employing a non-intrusive instrumentation

mechanism makes the monitoring effort quite lightweight. In addition, the fact that

the target system binaries are not modified makes it possible for our tool to be

applied to (commercial) software with licenses and/or support agreements that

explicitly forbid the modification of binary code.

126

E. Deliverables

The source code for the RV tool developed in Chapter 3, together with its exten-

sions is available on the CD accompanying this manuscript. It can be accessed by

navigating to the /dev directory.

A soft copy of this manuscript is also included, and can be accessed by navigating

to the /doc directory.

127

References

[1] L. Aceto and A. Ingólfsdóttir. Testing hennessy-milner logic with recursion. In
W. Thomas, editor, Foundations of Software Science and Computation Struc-
ture, Second International Conference, FoSSaCS’99, Held as Part of the Eu-
ropean Joint Conferences on the Theory and Practice of Software, ETAPS’99,
Amsterdam, The Netherlands, March 22-28, 1999, Proceedings, volume 1578 of
Lecture Notes in Computer Science, pages 41–55. Springer, 1999.

[2] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba. Reactive Systems: Mod-
elling, Specification and Verification. Cambridge Univ. Press, New York, NY,
USA, first edition, 2007.

[3] B. L. Agarwal. Basic Statistics. Anshan Publishers, first edition, 2012.

[4] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed
Computing, 2(3):117–126, 1987.

[5] J. Armstrong. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, first edition, 2007.

[6] D. P. Attard and A. Francalanza. A Monitoring Tool for a Branching-Time
Logic. In Y. Falcone and C. Sánchez, editors, Runtime Verification - 16th
International Conference, RV 2016, Madrid, Spain, September 23-30, 2016,
Proceedings, volume 10012 of Lecture Notes in Computer Science, pages 473–
481. Springer, 2016.

[7] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quan-
tified event automata: Towards expressive and efficient runtime monitors. In
D. Giannakopoulou and D. Méry, editors, FM 2012: Formal Methods - 18th In-
ternational Symposium, Paris, France, August 27-31, 2012. Proceedings, volume
7436 of Lecture Notes in Computer Science, pages 68–84. Springer, 2012.

[8] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and
TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14, 2011.

[9] A. K. Bauer and Y. Falcone. Decentralised LTL monitoring. In D. Gian-
nakopoulou and D. Méry, editors, FM 2012: Formal Methods - 18th Interna-
tional Symposium, Paris, France, August 27-31, 2012. Proceedings, volume 7436
of Lecture Notes in Computer Science, pages 85–100. Springer, 2012.

128

References

[10] I. Cassar and A. Francalanza. On Synchronous and Asynchronous Monitor In-
strumentation for Actor-based Systems. In FOCLASA, volume 175 of EPTCS,
pages 54–68, 2014.

[11] I. Cassar, A. Francalanza, and S. Said. Improving Runtime Overheads for
detectEr. In B. Buhnova, L. Happe, and J. Kofron, editors, Proceedings 12th
International Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures, FESCA 2015, London, United Kingdom, April 12th,
2015., volume 178 of EPTCS, pages 1–8, 2015.

[12] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media, first
edition, 2009.

[13] F. Chen and G. Rosu. Parametric trace slicing and monitoring. In
S. Kowalewski and A. Philippou, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 15th International Conference, TACAS 2009,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume
5505 of Lecture Notes in Computer Science, pages 246–261. Springer, 2009.

[14] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
first edition, 1999.

[15] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model Checking and
the State Explosion Problem. In B. Meyer and M. Nordio, editors, Tools for
Practical Software Verification, LASER, International Summer School 2011,
Elba Island, Italy, Revised Tutorial Lectures, volume 7682 of Lecture Notes in
Computer Science, pages 1–30. Springer, 2011.

[16] C. Colombo and Y. Falcone. Organising LTL monitors over distributed systems
with a global clock. In B. Bonakdarpour and S. A. Smolka, editors, Runtime
Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings, volume 8734 of Lecture Notes in Computer
Science, pages 140–155. Springer, 2014.

[17] C. Colombo, A. Francalanza, and R. Gatt. Elarva: A monitoring tool for
erlang. In S. Khurshid and K. Sen, editors, Runtime Verification - Second
International Conference, RV 2011, San Francisco, CA, USA, September 27-
30, 2011, Revised Selected Papers, volume 7186 of Lecture Notes in Computer
Science, pages 370–374. Springer, 2011.

[18] C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime mon-
itoring of real-time and contextual properties. In D. D. Cofer and A. Fantechi,
editors, Formal Methods for Industrial Critical Systems, 13th International
Workshop, FMICS 2008, L’Aquila, Italy, September 15-16, 2008, Revised Se-
lected Papers, volume 5596 of Lecture Notes in Computer Science, pages 135–149.
Springer, 2008.

129

References

[19] C. Colombo, G. J. Pace, and G. Schneider. LARVA — safer monitoring of
real-time java programs (tool paper). In D. V. Hung and P. Krishnan, editors,
Seventh IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2009, Hanoi, Vietnam, 23-27 November 2009, pages 33–37.
IEEE Computer Society, 2009.

[20] Y. Falcone, J. Fernandez, and L. Mounier. What can you verify and enforce
at runtime? STTT, 14(3):349–382, 2012.

[21] A. Francalanza, L. Aceto, and A. Ingólfsdóttir. On verifying hennessy-milner
logic with recursion at runtime. In E. Bartocci and R. Majumdar, editors,
Runtime Verification - 6th International Conference, RV 2015 Vienna, Austria,
September 22-25, 2015. Proceedings, volume 9333 of Lecture Notes in Computer
Science, pages 71–86. Springer, 2015.

[22] A. Francalanza, A. Gauci, and G. J. Pace. Distributed system contract moni-
toring. J. Log. Algebr. Program., 82(5-7):186–215, 2013.

[23] A. Francalanza and A. Seychell. Synthesising correct concurrent runtime
monitors. Formal Methods in System Design, 46(3):226–261, 2015.

[24] F. Hebert. Learn You Some Erlang for Great Good!: A Beginner’s Guide. No
Starch Press, first edition, 2013.

[25] L. Hoguin. 99s. http://ninenines.eu. Accessed: 2016-08-13.

[26] O. Kupferman. Variations on safety. In E. Ábrahám and K. Havelund, ed-
itors, Tools and Algorithms for the Construction and Analysis of Systems -
20th International Conference, TACAS 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in
Computer Science, pages 1–14. Springer, 2014.

[27] M. Leucker and C. Schallhart. A Brief Account of Runtime Verification. J.
Log. Algebr. Program., 78(5):293–303, 2009.

[28] Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comput.
Sci., 83(1):91–130, 1991.

[29] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu. An overview of the
MOP runtime verification framework. STTT, 14(3):249–289, 2012.

[30] R. Milner. A Calculus of Communicating Systems (Lecture Notes in Computer
Science). Springer, first edition, 1982.

[31] R. Milner and R. Milner. Communication and Concurrency (Prentice Hall
International Series in Computer Science). Prentice Hall PTR, first edition,
1995.

130

http://ninenines.eu

References

[32] C. O’Neil and R. Schutt. Doing Data Science: Straight Talk from the Frontline.
O’Reilly Media, first edition, 2013.

[33] G. Reger. Automata based monitoring and mining of execution traces. PhD
thesis, University of Manchester, UK, 2014.

[34] G. Reger, H. C. Cruz, and D. E. Rydeheard. Marq: Monitoring at runtime
with QEA. In C. Baier and C. Tinelli, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume
9035 of Lecture Notes in Computer Science, pages 596–610. Springer, 2015.

[35] A. Roscoe. Theory and Practice of Concurrency. Prentice Hall, first edition,
1997.

[36] G. Rosu and F. Chen. Semantics and algorithms for parametric monitoring.
Logical Methods in Computer Science, 8(1), 2012.

[37] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, jun 1955.

131

	Introduction
	Problem Synopsis and Motivation
	Aims and Objectives
	Assessment Criteria
	Objectives

	Document Outline

	Background
	Runtime Verification
	Monitors

	Modelling Reactive Systems
	Specifying Correctness Properties
	The logic HML
	Monitoring HML

	Erlang
	Tracing

	Conclusion

	A Tool for the Monitorable Subset of HML
	Monitor Synthesis
	Implementation
	Pattern Matching
	Asynchronous Monitors
	Monitor Compilation

	Conclusion

	Local Monitoring
	An Overview of Local Monitoring
	Implementability
	The Applicability of Local Monitoring
	A Qualitative Study
	Understandability
	Maintainability
	Expressivity
	Fault Tolerance

	A Quantitative Study
	Data Analysis and Representation
	Isolated Components
	Communicating Components
	Commentary

	Conclusion

	Case Study
	A Third-Party Application
	The Open Telecom Platform
	The Ranch Architecture

	Monitoring for the Ranch Protocol
	A Quantitative Evaluation of Ranch
	Experiment Setup
	Performance Measurements

	Conclusion

	Towards Dynamic Local Monitoring
	An Overview of Dynamic Local Monitoring
	Implementation Challenges
	Trace Event Loss
	Trace Event Routing
	Routing Table Management
	Garbage Collection

	A Preliminary Proof of Concept
	An Example

	Conclusion

	Conclusion
	Future Work
	Related Work

	Refining the Monitor Synthesis
	Translation From mHML to Erlang Monitors
	Global Monitoring for the Ranch Protocol
	Using the Tool
	Creating the Target System
	Instrumenting the Target System
	Co-safety Properties
	Correct Property Synthesis

	Deliverables
	References

