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Abstract. This paper presents a comparative study between two soft-
ware engineering techniques, reversible computation and runtime adap-
tation, in the context of industrial IoT. We frame our comparison around
a representative Industry 5.0 shop floor case study that focuses on the
high-precision manufacturing of integrated circuits. The case study iden-
tifies four error scenarios that can arise in typical shop floor operations
and evaluates how reversible computation and runtime adaptation ad-
dress them, highlighting the strengths and limitations of each approach.
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1 Introduction

Industrial automation has seen significant recent advancements, driven by the
robotisation developments of Industry 4.0 [48], and further extended to collabo-
rative robots (or cobots) under Industry 5.0 [29]. These advancements have made
production automation increasingly accessible to small and medium-sized enter-
prises (SMEs). This uptake has enabled production automation in low-volume
and small-batch manufacturing, sectors that were previously considered beyond
the reach of such technologies [28,78]. Indeed, achieving lean small-batch manu-
facturing through automated production is now considered central to the future
of industrial development and competitiveness, particularly in high-precision and
safety-critical domains [8], e.g., microelectronics, automotive, and aerospace.

Industrial IoT (IIoT) plays a central role in enabling the sensor-driven in-
frastructure underpinning Industry 4.0 and 5.0 [63,9]. It facilitates real-time
monitoring and control in robotised environments, where safety-critical feed-
back mechanisms govern human-robot interaction [11]. Robotisation fundamen-
tally relies on the digitisation of the physical factory shop floor and assembly
line. This process is typically governed by two requirements [64,11]:
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Automation robustness requires robotised manufacturing to anticipate, de-
tect and avert uncertainties, errors, and abnormalities. Not meeting these
conditions could lead to equipment damage, production defects, and in the
case of cobots, human injuries and fatalities.

Automation flexibility requires manufacturing robots to be resilient to errors
and unexpected situations. As much as possible, production should remain
uninterrupted in order to reap the benefits of automation and maximise
production gains.

There are various approaches that are used to attain high levels of automa-
tion robustness and flexibility [62]. At one end of the spectrum, static solutions
augment the digital models of shop floors and assembly lines. Static solutions in-
corporate uncertainty and error occurrences via techniques such as Monte Carlo
simulations [18] and machine learning [41]. The latter offline error prediction
techniques then permit the design of robust production processes that toler-
ate uncertainty [23,52]. However, static approaches are still susceptible to break
down whenever unexpected errors fall outside predicted scenarios [64]. In addi-
tion, static solutions often require vast amounts of resources to model all even-
tualities and work adequately (e.g. data gathered for machine learning purposes
and computational power required to analyse the data). These prohibitive up-
front costs can render them beyond the reach of SMEs [59]. At the other end of
the spectrum are the sensor-based dynamic approaches, where set-ups such as
vision-based control systems [87,71], often fused with other sensory inputs e.g.
LiDARs, provide greater automation flexibility in handling uncertainty through
dynamic intervention [27]. Yet, this enhanced flexibility comes at a higher cost,
such as, installing additional (expensive) high-precision sensors [73,85], which can
be prohibitive to many SMEs. Additionally, the runtime computational overhead
required may exceed the capabilities of the robot hardware, where determining
the right course of action on-the-fly under tight latency constraints may be in-
tractable [59]. Due to these constraints, full-blown dynamic techniques might
ultimately resort to more standard graceful degradation approaches [33] for a
number of situations.

There are other techniques that strike a balance between static and dynamic
approaches to maintain cost-efficiency, thereby extending production automation
to a wider range of enterprises. At the same time, these techniques incorporate
static information about the shop floor digital model to alleviate the need for
high-precision hardware and minimise the runtime computation needed to effect
interventions in a timely and precise manner [59]. Runtime Monitoring [37,17]
and Reversible Computing [54,75] are two prominent techniques with these char-
acteristics. This paper compares these two approaches in order to understand
their commonalities, relative advantages, and limitations. We also investigate
how the two techniques can be used to benefit one another. This comparison is
given in the context of a representative Industry 5.0 high-precision shop floor
case study that manufactures integrated circuits (ICs).

The paper is structured as follows. Sec. 2 outlines the main characteristics of
our shop floor case study, and sec. 3 summarises the key elements of the runtime
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monitoring and reversibility techniques. Sec. 4 considers a selection of error sit-
uations that may arise in our shop floor case study and argues how these can be
handled by the respective techniques. It also discusses how the two approaches
can be combined to leverage their complementary strengths. Sec. 5 concludes.
Our survey does not assume prior knowledge of the aforementioned software
engineering techniques. Familiarity with industrial IoT and the challenges in
Industry 4.0 and 5.0 is beneficial.

2 Industry 5.0 factory shop floors

Industry 4.0 and 5.0 smart factories comprise fast-paced shop floors where self-
driving vehicles and other machinery need to adapt to dynamic changes in real-
time. Autonomous mobile robots (AMRs) meet this need by using various sensing
devices, e.g. cameras, LiDARs, and inertial measurement units [77], to perceive
their surroundings, plan optimal navigation routes, and execute real-time obsta-
cle avoidance.

The fleet management system (FMS), or fleet manager, coordinates the in-
teraction between different machines on a shop floor, e.g. AMRs, high-precision
machines, and conveyor systems [43]. It acts as a central coordinator for route
planning, movement synchronisation, task assignment, etc., by issuing high-level
commands to machines. For instance, the command ‘move from A to B via way-
points 1,2,3’ plans the route of an AMR between two stations; ‘wait at waypoint
3 until the docking station at A becomes unoccupied’ synchronises its movement
w.r.t. other machines; and ‘pick up object at A’ tasks the AMR with moving ob-
jects around the shop floor. A machine interprets fleet manager commands via
its onboard planning module that decomposes them into a detailed motion plan.
The plan is subsequently converted into fine-grained control instructions, e.g.
joint trajectories and velocity profiles, and fed to the motion controller, which
manages machine actuators in real-time via continuous feedback loops. Mod-
ern FMSs function as coordinating hubs that expose APIs to enable integration
with external systems, e.g. manufacturing execution systems (MESs), quality
control, and digital twin platforms. These APIs offer capabilities such as robot
coordination, task assignment, and real-time monitoring of mobile robots.

The diagnostics exposed by the FMS APIs may not always offer sufficient
capabilities to external supervision systems wanting to provide added robust-
ness, automation flexibility, quality control, and human safety on top of existing
functionality. IIoT systems can be deployed as an overlay network [81] of be-
spoke devices attached to the FMS and factory shop floor equipment to collect
specific or high-precision data about machinery and its operating environment.
For instance, LiDAR sensors affixed to an AMR base can establish equipment
safety perimeters; vibration sensors mounted on a robotic arm can detect exces-
sive force during pick-and-place operations; and particulate sensors can reveal
increased risks of contamination in sensitive industrial processes. Integrating sen-
sor data through fusion algorithms enhances operational awareness by providing
a multi-faceted view of system behaviour. This can enable faster anomaly de-
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tection and more informed, context-aware decision-making [80]. Sec. 4 describes
an external MES that manages the operation of a factory shop floor model (see
sec. 2.1) via a conceptual FMS API and IIoT sensor network overlay.

Factory shop floor designs follow one of three approaches [43]. The fully-
autonomous approach relegates the fleet manager to a monitoring capacity. Each
machine has a local planner that plans its routes between stations and resolves
conflicts (e.g. movement synchronisation, collision avoidance) with other ma-
chines [30]. In the semi-autonomous approach, machines offload the route plan-
ning onto the fleet manager to optimise the overall movement across the shop
floor but retain their conflict resolution capability [36]. The centralised approach
utilises the FMS fully [20]. It computes a global route plan for every machine,
inherently avoiding conflicts and streamlining navigation on the shop floor. This
centralised approach relieves individual machines from autonomous decision-
making but comes at the cost of additional computational and communication
overhead when dynamic changes in the environment (e.g. unforeseen obstacles)
oblige the FMS to recompute all routes.

2.1 Integrated circuit manufacturing model

We focus on a subclass of Industry 5.0 manufacturing plants that specialise in
automotive-grade ICs, MEMS, and microcontrollers, e.g. [82,72,79]. A plant re-
ceives wafers containing thousands of ICs for assembly, testing, and packaging.
The process begins with wafer dicing, where each chip (or die) is separated from
the wafer. After dicing, dies are individually mounted onto a package substrate
using a die attach material, such as epoxy or solder. This is followed by wire or
flip-chip bonding, which establishes electrical connections between the die and
package substrate wiring. The chip is then encased in protective housing, e.g.
epoxy moulding compound (EMC), to shield it from mechanical damage, mois-
ture, and other contaminants, while also permitting efficient heat dissipation.
Lastly, the encapsulated ICs undergo deflashing to remove the thin layer of ex-
cess epoxy that can bleed between connections during the die encasing process.

Fig. 1 depicts a fragment of the manufacturing process described above for
a particular shop floor [69]. It consists of high-precision machines that perform
the final steps of the process, namely wire bonding, EMC die encasing, and
deflashing. Stockers are specialised clean storage units that accommodate die
trays containing batches of dies in various stages of completion. High-precision
machines and Stockers have docking stations, which are designated interfaces
where die trays are deposited for processing and retrieved after completion. Mo-
bile manipulators (MMs), which are hybrid machines comprising a robotic arm
for picking die trays mounted on an AMR base, transport die trays between the
high-precision machines and stockers. The FMS orchestrates the operation of
the entire shop floor, adopting the centralised approach as described in sec. 2.
Human intervention on the shop floor is limited to specific tasks, such as ma-
terial handling and replenishment, quality control and inspection, and machine
servicing and fault repair. Fig. 1 shows machines outfitted with IoT sensors.
This use case employs (i) LiDAR sensors affixed to MM bases to establish safety
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Fig. 1. A typical factory shop floor at an IC manufacturing plant

perimeters around human operators; (ii) vibration sensors mounted on robotic
arm grippers to detect excessive force during pick-and-place manoeuvres; and
(iii) particulate sensors to monitor airborne contamination on the shop floor.

Example 1. Fig. 1 captures one hypothetical workflow computed by the FMS:

1a MM1 picks a tray of diced dies from the Stocker and delivers it to the Bonder.
1b Simultaneously, MM2 retrieves a tray of bonded dies from the Bonder and

deposits it into the Stocker.
2 MM1 picks the die tray handled by MM2 in step 1 from the Stocker and

delivers it to the Encaser.
3 MM1 retrieves the processed tray of encased dies from the Encaser and de-

posits it into the Stocker.
4 MM2 picks the die tray handled by MM1 in step 3 from the Stocker and

delivers it to the Deflasher.
5 MM2 picks the processed tray of deflashed dies and deposits it into the

Stocker. ■

3 Techniques for modifying system behaviour at runtime

In a non-automated factory shop floor, it is routine for human operators to ei-
ther report issues or intervene as they arise. Simply replacing humans with their
corresponding automated production equivalent robs the shop floor of this im-
plicit but essential supervision. Thus, to attain an automated shop floor with
functionality comparable to the non-automated one, one also needs automated
issue detection and remediation. Sec. 1 argues that IIoT systems, such as those
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described in sec. 2, are often hard to model fully (e.g. due to partial knowl-
edge about the environment or phenomena, such as dust particles, that are too
complex to model) or maintain continually (e.g. prototype refinement over iter-
ations). More critically, certain system attributes cannot be analysed (e.g. pro-
filing [42]) or modified (e.g. restarting failed components [53]) unless the system
is running. Runtime monitoring and reversible computation are two techniques
that enable the runtime analysis and modification of IIoT systems such as the
one presented in fig. 1.

3.1 Runtime monitoring and adaptation

Runtime monitoring (RM) is a family of dynamic analysis techniques [17,40]. It
uses monitors: machines that incrementally analyse a finite prefix of the execu-
tion (or trace) exhibited by the system under scrutiny (SuS) to check whether
its behaviour meets prescribed criteria. In RM, these criteria take the form of
correctness properties [4,3], often expressed in high-level formalisms such as tem-
poral logics [13,17]. Properties encode prior knowledge about the SuS as correct
behaviour that the system is expected to exhibit. Monitors are synthesised from
correctness properties (e.g. see [14,70,2,12]) and instrumented with the SuS to
gather trace events (e.g. sensor data) during execution. The resulting set-up cap-
tures an unfolding model of the SuS [5] compared to full (or complete) models
used in techniques such as Model Checking [47].

RM is well-suited to IIoT scenarios where human supervision is impractical,
e.g. cognitive fatigue [84] or continuous manual oversight and intervention [51],
or infeasible, e.g. autonomous warehouses [16] or lights-out manufacturing [74]. It
can analyse black-box (proprietary) components (e.g. AMRs) without needing
access to their internals. Moreover, IIoT systems encompass aspects, such as
mechanical wear and tear or human negligence, that are complex to predict and
model statically. More importantly, control software often needs to intervene in
the execution of the cyber-physical processes (in case of safety violations).

There are two main RM intervention methods [25,35]. Runtime enforce-
ment (RE) ensures the execution of the SuS meets correctness properties [6,7].
Enforcement monitors take preventive action, steering the operation of the sys-
tem within the bounds of properties’ specifications. RE assumes the SuS to be
highly instrumentable, as monitors must enforce its execution continually. This
prerequisite is often too stringent for IIoT systems comprising black-box or pro-
prietary components. Runtime adaptation (RA) is a less stringent alternative to
RE. RA takes remedial actions (also called adaptations) after monitors detect
violations to a correctness property [49,24]. This RM variant is less invasive than
RE since it does not need to instrument the SuS to the same degree. Adapta-
tion monitors aim to restore the SuS to a good state from where the intended
execution can potentially continue. This fits the black-box nature of industrial
machines (such as the ones of fig. 1) since monitors reason about and react to
the observable behaviour of components rather than their internal states. More-
over, since monitor and system components can run in isolation [15,5,40], RA
can offer better safeguards against inadvertently affecting the SuS execution.
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RA relies on two forms of prior knowledge on the SuS. The first is an abstract
notion of states the SuS can be in, together with a set of observable events that
capture the transitions between these states. The second kind of SuS knowledge
assumed is the correctness behaviour defined over these states, defined in terms
of either execution graphs or traces labelled by events. The latter identify a range
of states that should not be reached during execution, and trigger adaptation
monitors to administer predetermined remedial actions to steer the SuS back to
a non-violating state. Note that the state reached following a series of remedial
actions need not be a state visited prior to the violation. For instance, an AMR
that ends up off-track on the shop floor can be directed back to its starting point
by a RA, but an AMR that develops a mechanical fault may need to be pow-
ered off, which constitutes an unvisited state that permits graceful degradation
without compromising safety.

3.2 Reversible computation

Reversible computation (RC) is a software engineering paradigm where compu-
tations are partitioned as either executing forwards or backwards [75,10]. This
technique allows program executions to be undone whenever a number of back-
ward computation steps are the reverse of forward steps, providing an efficient
mechanism for error recovery and fault-tolerance. RC was originally motivated
by the need for low-energy computing and heat dissipation reduction [56]. It
has since been applied to other areas, including programming languages [46,86]
and debugging [45,55,34], modelling and algorithm design [19,32,31,66,65,54], as
well as to robotics [62,61]. In IIoT settings such as the one outlined in fig. 1,
RC is useful because many physical operations have a natural (or direct) reverse
counterpart that undoes the effect of the original operation, e.g. a MM moving
to the left by one unit can be reversed by moving to the right by the same
unit. This provides an opportunity to create a layer of abstraction that facil-
itates programming and enables code reuse. The relationship between forward
operations and their reversible counterpart is not always direct, particularly in
cases where operations have external dependencies or side effects. In such cases,
reversibility may be achieved by traversing reversible computational paths that
differ from the original computation. One way to achieve this indirect reversibil-
ity makes use of checkpoints [68,38,83,57] that allow systems to rollback to a
known reversible state, or else, by explicitly creating separate functions that
perform the reverse operations. In some cases, auxiliary mechanisms (e.g., mem-
ory for execution histories) are employed to reconstruct past states and enable
reversibility [67,60,21]. Operations that cannot be directly or indirectly reversed
are considered irreversible [62].

The above concepts extend naturally to industrial automation settings, such
as the factory shop floor discussed in sec. 2, where computation corresponds
to sequences of physical actions [62]. Every operation has its own reversibility
characteristics defined by its intrinsic nature and its effect on the shop floor
workflow. Some operations are directly reversible due to their confined side effect
on other entities on the shop floor, such as a MM retracing its path or recharging
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the MM batteries. Others require indirect reversal. For example, a MM pushing a
batch into a Stocker must instead grasp the batch before pulling it back. Picking
the last die from the Stocker in fig. 1 is also indirectly reversible when the
resulting empty Stocker affects the operation of the other MMs. This is the case
since in addition to returning the die to the Stocker, reversing the operation
needs to inform the other MMs that the Stocker is no longer empty. There
are also operations like soldering or gluing, which are inherently irreversible
because there are no obvious recovery operations that apply. A RC framework
may also lift the terms directly reversible, indirectly reversible, and irreversible
to strategies. Strategies are defined as sequences of operations. A strategy is a
forward strategy when it consists exclusively of forward operations; backward
strategies are defined analogously. Forward strategies are reversible whenever
there exists a backward strategy that restores the computation to the original
state. A forward strategy is directly reversible when its backward strategy is
composed of the inverse of its forward operations in reverse order. Conversely,
an indirectly reversible strategy is one where its backward strategy does not
satisfy the above condition [62,61].

3.3 RA and RC side-by-side

There are a few key distinguishing aspects of RA, discussed in sec. 3.1, and
RC, discussed in sec. 3.2. The first one lies in how error states are defined and
handled. In RC, there is a fixed delineation between good and error states,
where backward computation is triggered only when the program transitions
to an error state [58]. By contrast, error states in RA are captured implicitly
by the correctness property being considered: an erroneous state for one prop-
erty may be a good state for a different property. In certain cases, RA and RC
may converge when a particular state is inherently erroneous for any correctness
property (e.g. a damaged robotic arm). A second, but related, differentiating
aspect is that correct behaviour is more explicit in RA, formally stated in terms
of a (declarative) specification logic [37]. These specifications then permit the
automated synthesis of the (algorithmic) runtime adaptation procedure in terms
of monitors. The expected correct behaviour is typically left implicit in the case
of RC. Leaving this expected behaviour implicit rules out the possibility of ap-
plying automated program synthesis techniques, where the reversible program
generally needs to be hand-coded by the software engineer. The third distin-
guishing feature is that in RC, reversible operations guarantee a return to a
specific previous state in the (forward) computation or an equivalent state for
some notion of state equivalence [32,10,60], e.g. causal-consistent reversibility
where two states are equivalent modulo the order of concurrent actions [59].
RA offers no such guarantees. This permits the formulation of trial-and-error
repetition strategies to deal with unpredictable (minor) variations or extraneous
conditions on the shop floor that are not captured via high-precision sensors. For
example, a MM that misses the docking station when moving forward (possibly
due to tiny obstructing objects), can be reattempted after moving backwards.
This reduces reliance on manual tuning and calibration to handle special cases,
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thereby improving the efficiency and adaptability of automated production lines.
In practice, repetition strategies are limited. For example, a MM retracing the
same route consumes battery power and contributes to mechanical wear, mak-
ing unbounded repeated attempts costly and unsustainable. Such operations are
considered partially repeatable, as they can only be performed a limited number
of times. Schultz et al. [76] address this by introducing upper bounds on repeti-
tions, for instance by associating retries with a finite number of tokens, enabling
more predictable and resource-aware reversible strategies.

4 Recovering from issues on the factory shop floor

Human safety, error recovery, and graceful degradation are critical concerns in
Industry 4.0 and 5.0 systems. We study how RA and RC from sec. 3 can be
used to address these challenges via a selection of scenarios describing potential
issues that could arise in the factory shop floor model presented in sec. 2.1.

4.1 Target architecture

Our shop floor is managed by one MES that orchestrates the movement of MMs
and coordinates the high-precision machines and Stocker operations through the
FMS. Fig. 2 depicts this centralised set-up. The MES receives diagnostic informa-
tion from the FMS API, e.g. blok(dev=MM1,at=Stocker), and issues commands
in response, e.g. move(dev=MM1,from= Stocker,to=Bonder,waypts= [1,2,3]),
which the FMS relays to machines on the shop floor. Our MES supplements FMS
diagnostics by LiDAR, vibration, and particulate sensor data collected through
the IIoT network deployed on the shop floor, e.g. vibr(dev=MM1,amt= 5).

Fig. 2 illustrates two alternative methods of implementing the MES. Method
A implements the MES using conventional programs instrumented with RA
monitors, whereas method B implements the MES as reversible programs. RA
induces a separation-of-concerns, delineating the core program logic that handles
normal-case operation and the RA monitor control flow, which intervenes when
unexpected conditions arise [26]. By comparison, RC integrates the core logic
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and the error-handling mechanisms within a single program. Props. p1 to p4 in
sec. 4.2 showcase how remedial interventions can be implemented in terms of the
RA and RC paradigms.

4.2 RA and RC for handling runtime errors

Blocked docking station Recall that in fig. 1, each high-precision machine and
Stocker own a designated docking station where MMs can deposit or pick up ICs.
MMs are equipped with LiDAR modules to perceive and map the environment
in real-time. Machine docking stations must be unobstructed for a MM to dock
successfully. One property we want to hold is:

‘MMs never block when entering a docking station.’ (p1)

Suppose the shop floor executes step 1 from sec. 2.1. The MES starts by issu-
ing a pick command to the FMS, instructing MM2 to lift the tray of bonded dies
from the Bonder, i.e., pick(dev=MM2,from=Bonder,obj=Bonded_Dies). Sub-
sequently, the FMS relays a second MES command to MM2 to move the machine
from the Bonder to the Stocker via specific waypoints, move(dev=MM2,from=
Bonder,to=Stocker,waypts=[1,2,3]). If the LiDAR on MM2 detects obstructions
at the Stocker docking station, it transmits the data lidr(dev=MM2,dst= 0.1)
to the MES. Since MM2 is unable to dock, the FMS also sends the blok(dev=
MM2,at = Stocker) signal to the MES. Both lidr and blok enable the MES to
detect a violation of prop. p1.

Runtime adaptation. To remedy the violation of prop. p1, the MES RA monitor
would instruct MM2 to return to the Bonder via the command:

move(dev=MM2,from= Stocker,to=Bonder,waypts= [3,2,1]). (1)

To promote automation flexibility (see sec. 1) and minimise blockage on the fac-
tory shop floor, the RA monitor could also redirect MM2 to deposit the bonded
ICs at a second Stocker, if available. This manoeuvre is expressed as the com-
mand move(dev=MM2,from= Stocker,to= Stocker′,waypts= [3,4,5]).

Reversible computation. Forward computation comprises the operation sequence:

pick(dev=MM2,from=Bonder,obj=Bonded_Dies); (2)
move(dev=MM2,from=Bonder,to= Stocker,waypts= [1,2,3]) (3)

When the MES receives the signal blok(dev=MM2,at=Stocker) from the FMS,
the system transitions to an error state. This triggers the RC program on the
MES to perform the backward computation for op. (3) and reverse the system to
a good state. Op. (1) is the direct inverse of the forward computation 3, which
takes MM2 back to the Bonder along the reverse waypoints 3,2,1.

Note that RC reverses the system to a previous good state, while RA reverts
to a good state that need not be the previous one. In this instance, RA offers
more flexibility since it permits the MM to deposit ICs at a different Stocker.
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Damaged dies Recall steps 1 , 3 and 5 from sec. 2.1 where MMs are tasked
with fetching batches of dies from and depositing them to Stockers. Dies are
highly sensitive and slight mishandling, e.g., sudden jolts during transport, can
render them defective. Although in such cases testing can be performed to assess
whether dies are damaged, it is often cheaper and easier to discard suspect dies
in practice. To detect potential damage, vibration sensors are mounted on MM
chassis and arm grippers. The following property safeguards the integrity of dies:

‘High-precision machines never receive trays with damaged dies.’ (p2)

Suppose a gripper vibration sensor reports values above a predefined thresh-
old (say, 3 units) to the MES:

vibr(dev=MM1,amt= 5) (4)

At this point, we assume that the batch of dies in transit is likely damaged, in
which case an error state is reached.

Runtime adaptation. A RA-driven MES can discard the potentially damaged
batch of dies at a designated disposal unit, e.g. by issuing the operation sequence

move(dev=MM1,from=Current,to=Disposal_Unit,waypts= [5,6]); (5)
plce(dev=MM1,to=Disposal_Unit,obj=Dies) (6)

and instruct the MM to fetch a fresh batch from the Stocker.

Reversible computation. The sequence of ops. (4) to (6) can be viewed as a
RC. The forward computation consists of MM1 transporting a batch of dies to
the high-precision machine. Upon detecting a problem, signalled by op. (4), the
MES instructs MM1 to discard the potentially faulty batch, ops. (5) and (6).
Discarding the batch reverses the effect of the error. This strategy is indirectly
reversible, since a good state (i.e., a high-precision machine receiving functional
dies) is reached via a series of operations rather than via one inverse operation.
We remark that since the batch of remaining functional dies in the Stocker is
necessarily limited, this reverse strategy is also partially repeatable.

Damaged robotic arm Robotic arm damage, e.g. human or other equipment
colliding with the arm, can be indirectly detected through the MM vibration
sensors mentioned earlier. The next property captures this requirement:

‘Robot arm vibration levels never exceed 50.’ (p3)

Suppose MM2 in fig. 1 experiences a collision in step 4 whilst executing the
FMS command move(dev=MM2,from=Stocker,to=Deflasher,waypts= [1,4,7]).
The vibration sensor signals the MES, vibr(dev=MM2,amt=100), which triggers
a violation of the prop. p3.
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Runtime adaptation. A RA monitor that flags this violation can decommission
the affected MM by instructing it to return to the repair bay, e.g., move(dev=
MM2,from=Current,to=Repair_Bay,waypts=[2,3]). The MES can then reassign
the pending tasks of MM2 to other MMs in the fleet, and optionally, notify
a technician on the shop floor to assess the damage. The following operation
sequence is a hypothetical adaptation the MES initiates via the FMS to reassign
the affected task to MM1.

pick(dev=MM1,from= Stocker,obj=Encased_Dies);
move(dev=MM1,from= Stocker,to=Deflasher,waypts= [6,3,1])

Reversible computation. Damage to the robotic arm is irreversible since the MES
cannot restore MM2 to an operational state using a backward computation.

Degraded air quality Industrial environments can generate particulate mat-
ter from physical processes, e.g., wafer dicing and IC deflashing (see sec. 2.1),
foot traffic, etc. This can damage the assembly of ICs, and in higher amounts,
degrades sensor accuracy and endangers human health [44]. For instance, an
ISO Class 5 cleanroom according to ISO 14644-1 allows a maximum of 3,520
particles/m3 that are 0.5µm in size or larger [1]. Our shop floor of fig. 1 is
equipped with particulate sensors that monitor air quality and report readings
to the MES via the IIoT network. The shop floor is also outfitted with high effi-
ciency particulate air (HEPA) filters to purify the air when required. A property
that ensures cleanroom air quality levels is:

‘Particulate matter levels never exceed 3,520.’ (p4)

Particulate sensors sample the air quality at the end of every workflow round,
i.e., after all MMs have completed their tasks and return to their respective
docking stations. Suppose that at the termination of one such round, e.g. step 5

of ex. 1, the particulate sensor detects degraded air quality and transmits the
reading part(amt= 5001) to the MES, which violates prop. p4.

Runtime adaptation. The RA monitor for prop. p4 can trigger a recovery pro-
cedure that activates the HEPA filtration system to purify the air

hepa(spdlvl= 5,duration= 10); (7)

and instructs MMs to execute wheel-cleaning routines at designated adhesive
cleaning zones

move(dev=MM1,from= Stocker,to=Adhesive_Zone,waypts= [2,4,6]); (8)
move(dev=MM2,from=Deflasher,to=Adhesive_Zone,waypts= [1,6]) (9)
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Reversible computation. The handling of a violation of prop. p4 is not a directly
reversible RC operation. In fact, reversing the MMs to their original position on
the shop floor (e.g., reroute MM1 back to the Stocker in step 1 ) does not restore
the air quality, since this is a by-product of the physical production process. Ac-
tivating the HEPA filtration system, however, indirectly reverses the system to a
state of optimal air quality. More generally, restoring the air quality may require
repeated activations of the filtration system, e.g. performing op. (7) twice, until
a safe air quality level is reached. Lastly, if our notion of reversing the system
to a previous good state includes the MM wheel-cleaning procedure, the indi-
rect reversal strategy can be extended to include the ops. (8) and (9). Notably,
the reversal ops. (8) and (9), together with op. (7) can be executed concurrently.
This appears to contrast with previous assumptions about reversibility strategies
necessarily being structured as sequences of operations, and suggests the appli-
cation of more elaborate reversibility theories [32,59,65] to IIoT, e.g. approaches
such as [22] that allow for concurrent compensation actions.

4.3 RA and RC complementarity

RA and RC can be viewed as complementary software design principles. It is
possible to implement RA properties using only the reversible operations in a
reversible programming language: props. p1 and p2 in sec. 4.2 are instances of this
approach. Conversely, RC can be engineered in terms of RA, where adaptation
actions encapsulate the ad hoc implementation logic that corresponds to high-
level reversible operations, e.g. see discussion on prop. p4. Other examples of
the latter view include recent work [26,38,39], which proposes reversibility for
reliable and fault-tolerant message-passing concurrency via choreographed RA
monitors. We discuss other aspects of RA and RC next.

Reversible programs via RA Categorising operations and strategies as (i) di-
rectly reversible, i.e., invertible and can be reversed automatically, (ii) indirectly
reversible, i.e., requires a manually-defined reverse possibly consisting of multi-
ple operations, or (iii) irreversible, enables compilers to provide static guarantees
about reversible programs [62]. Writing reversible programs requires explicit rea-
soning about forward and backward computations layered over implicit notions of
good and error states. Reasoning about such programs may be challenging, as the
logic for correct behaviour and error mitigation is embedded directly in the code.
RA can alleviate this burden by decoupling the monolithic program logic that in-
tertwines forward and backward system computation. Much like aspect-oriented
programming in mainstream languages [50], this approach treats reversibility as
a cross-cutting concern. It structures reversible programs into two parts: forward-
computation (executable) code and declarative high-level RA properties whose
adaptation actions capture the backward-computation logic of the program ex-
clusively through reversible operations. Once RA synthesises properties into ex-
ecutable monitor code, it weaves it with the forward-computation program code
to generate the complete reversible program. This two-stage approach to gen-
erating reversible programs through RA has three benefits. First, it simplifies
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program reasoning by separating the forward- and backward-computation logic,
and automating the generation of the completed reversible program. Second,
backward-computation code can be further decomposed into fine-grained RA
actions that are layered around the core forward-computation logic, improving
modularity and enabling incremental development. The last crucial benefit is
that by limiting RA actions to reversible operations inherits the static guaran-
tees enjoyed by the RC programming language.

Combining RA with reversibility Irreversible RC strategies cannot revert
a system to a previous good state. RA is not bound by these all-or-nothing re-
versibility constraints. This makes RA applicable to cases where partial recovery
is sufficient to achieve graceful degradation and uphold automation flexibility
outlined, e.g. prop. p3 in sec. 4.2. RA can still benefit from reversible operations
and the static guarantees they bring about. This can be obtained at two different
levels. The first method organises RA properties where each property expresses
its remedial procedure using either ad hoc logic or reversible operations. The
second method mixes both ad hoc logic and reversible operations within the
same RA property. For instance, the remedial RA actions that uphold prop. p3
in sec. 4.2 instruct MM2 to return to its base. The ‘returning to base’ opera-
tion may need to be reversed if the base of MM2 is blocked, and this part of
the property can easily be expressed using reversible operations (see prop. p1).
However, reassigning pending tasks via the fleet manager in prop. p3 is not a
backward computation, and this latter segment of the remedial action can be
easily expressed using ad hoc logic.

5 Conclusion

This paper compares the strengths and limitations of runtime adaptation (RA)
and reversible computation (RC) as software paradigms for detecting and recov-
ering from errors in industrial IoT (IIoT) environments. We use a representative
IC manufacturing shop floor use case to showcase how both approaches can
be used to address common issues, e.g. equipment damage and environmental
hazards, emphasising different design trade-offs.

We observe that RA can support ad hoc recovery and graceful degradation
in the presence of irreversible operations. It delineates the reasoning about for-
ward computations, analysed as runtime events, and remedial actions, executed
as adaptation actions. RA is ideal for integrating cross-cutting behaviour as
monitors, modularising and supporting incremental IIoT systems development.
By contrast, RC guarantees fine-grained reversibility and supports repetition
strategies for trial-and-error recovery. The static guarantees given by RC are
counterbalanced by the (i) upfront effort required to encode high-level correct-
ness criteria directly into program logic, (ii) cognitive overhead of reasoning
about interleaved forward and backward computations, and (iii) limited applica-
bility of the approach in scenarios involving irreversible actions. We also explore
the complementary nature of RA and RC. RA can benefit from incorporating
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reversible operations to gain predictability and verification guarantees, while
RC development processes may be enriched by declarative RA specifications to
facilitate development and enhance modularity. Future work will explore auto-
mated synthesis of hybrid RA-RC monitors and their use in real-world smart
manufacturing settings.
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