
A Lexicon Server Toolkit for Maltese

Author: Duncan Paul Attard

Supervisors: Mr. Mike Rosner and Dr. John Abela

Observer: Dr. Gordon Pace

Department of Computer Science and Arti�cial Intelligence

University of Malta

June 2005

Submitted in partial ful�llment of the requirements

for the degree of Bachelor of Science I.T. (Hons.)

Abstract

This thesis implements a cooperative framework able to support the compilation

and development of a computational lexicon for Maltese. As a consequence, this

framework must provide all the tools needed by the user to communicate with the

central server, and access the various services that are provided. Since some of the

services were not expected to be developed in this project, one issue of paramount

importance was the fact that the framework had to be easily extensible.

The system provides access both to the linguist and programmer in a coherent

fashion. In addition, a series of tools aiding the linguist in text �le processing and

word list building, is also provided. Finally, a website where system development

is monitored, and new user registration is permitted, was set up. In addition, this

website provides the �rst free searchable Maltese dictionary, which apart from being

built in a distributed fashion, tries to match with high quality works already existing

in Maltese.

i

Acknowledgements

I would like to express my gratitude to Mr. Mike Rosner and Dr. John Abela, not

only for their immense amount of help and insights given throughout the project, but

also for the encouragement they have given me during the past months. I am aware

of the di�culties I have caused, and for this I will always be grateful.

I would also like to thank my family and friends for bearing with me during this

year, as well as my cousin for helping me with some issues on Maltese grammar

together with the provision of books on the language.

ii

Table of Contents

1 Introduction 1

1.1 Organization . 2

2 Background 4

2.1 Bioinformatics . 4

2.1.1 Sequence Alignment . 5

2.1.2 Distance Measurement . 10

2.2 Morphology . 13

2.2.1 Morphemes over a Language 14

2.2.2 Morphemes over words . 16

2.3 Clustering . 19

2.3.1 Hierarchical Clustering . 19

2.3.2 Partitional Clustering . 21

2.4 Previous Work on Maltese . 24

3 Core Architecture 28

3.1 Framework Design . 28

3.1.1 Client Application . 29

3.1.2 Database Design and Access 31

3.1.3 Dynamic Link Library System 33

3.2 Clustering . 34

3.2.1 Methods of Clustering . 35

3.2.2 Other Tools . 44

4 Front End Architecture 48

4.1 Client Application and Plug-ins . 48

4.1.1 Client Plug-ins . 49

iii

TABLE OF CONTENTS iv

4.1.2 Administrator Plug-ins . 53

4.1.3 The Common Client Application 56

4.2 Website . 58

5 Observations and Results 61

5.1 Evaluating the Clustering Algorithm 61

5.1.1 Clustering of Dictionary Text 62

5.1.2 Clustering of Biblical Text . 65

5.1.3 Word Statistics . 70

6 Further Work and Conclusions 72

6.1 Further Work . 74

6.2 Conclusion . 77

A Test Set 78

A.1 Clusters . 78

A.2 A�xes Used for Stemming . 85

B Maltese in a Nutshell 87

B.1 Basics . 87

B.1.1 The Maltese Alphabet . 87

B.1.2 Roots . 88

B.1.3 The Article . 88

B.2 Nouns . 89

B.2.1 Pronouns . 89

B.2.2 Nouns . 90

B.2.3 Diminutives . 91

B.3 Verbs . 92

B.3.1 Types of Verbs . 92

B.3.2 The Verb Forms . 92

B.3.3 Verb Conjugates . 93

C Using the Software 94

C.1 Setting up the Lexicon Services on a new Host 94

C.2 Software Overview . 96

C.2.1 The Administrator Plug-in . 96

TABLE OF CONTENTS v

C.2.2 The Standard User Plug-in . 99

C.2.3 The Text Tools Plug-in . 100

List of Figures

2.1 The Needleman-Wunsh algorithm . 9

2.2 A typical weight matrix . 12

2.3 Harris' algorithm entropy measure . 14

2.4 The algorithm proposed by Déjean 15

2.5 An example of MDL . 16

3.1 The data �ow in the system . 30

3.2 The use of the Data Access Layer . 32

3.3 The root-based clustering algorithm 43

4.1 The system components . 56

4.2 The common client application . 57

4.3 Searching the dictionary. 60

4.4 The dictionary bar. 60

C.1 The administrator's tools menu. 97

C.2 Using the dictionary management tool. 97

C.3 The part of speech construction dialog. 98

C.4 The standard user dictionary tool. 99

C.5 Amendments stored locally. 100

C.6 The text tools . 102

vi

Chapter 1

Introduction

The task of constructing a computational lexicon, especially for a language like Mal-

tese, is a very complex and laborious task, particularly if done manually. Expert

linguists will often need to carry out the task themselves, and for a highly in�ectional

language like the one in question, much time is spent examining large amounts of

texts to be able to categorize di�erent words respectively. If on the other hand, this

task is carried out in some automated or semi-automated fashion using well-known

methods, it is very unlikely that a set of methods from one discipline will address the

task in a global and appropriate manner.

The computational lexicon construction process is an extremely important task

in the area of Natural Language Processing (NLP), and usually, its product is a

fundamental building block of other systems, such as NL Understanding systems,

parsing, spell checking, and the like. Therefore, if all other users of the lexicon services

(including other systems) are to get the best of such a lexicon, its construction must

not be taken lightly, as it could cripple other systems depending on it.

For a language like Maltese1, which is a relatively `virgin' territory, as far as NLP is

concerned (Rosner et al., 1998), very few electronic resources exist. This lack of tools

thus makes Maltese both hard to analyze and to use, especially in other systems, as

any needed analysis of the language, must be integrated and handled in the systems

in question, rather than using already existing services.

The aim of this thesis is therefore to provide this basic building block, which will

hopefully not only provide a basis for other systems, but will also promote the Maltese

language, in the sense that it will provide linguists with tools making the analysis of

1A very brief introduction of the Maltese language is provided in Appendix B on page 87.

1

Chapter 1. Introduction 2

the Maltese language possible. Of course, being a largely time consuming task, it is

not expected that we develop all the necessary tools, yet, a solid framework must be

constructed so that in the future, tools developed by others can be easily integrated

into the system, not only to use existing services, but also provide to additional ones

in a standard manner.

This project focuses mainly on two things: the building of such a framework, and

also the necessary tools supporting its development, in the sense of management and

user tools. The main goals of the system are itemized below:

• Provision of a solid database back-end, and a clean interface to the tools and

users that will access the system services, where client programs and program-

mer API are to be handled seamlessly in a distributed fashion. The framework

must be readily extensible.

• Provision of structure to the words in the lexicon by using knowledge-free clus-

tering techniques which will cluster both Semitic and Romance words in a sat-

isfactory manner.

• Creation of a basic online dictionary providing not only meaning to users but

also accessible to programs wishing to retrieve information about words, such

as their part of speech, origin and the like.

• The creation of a set of tools which will allow the users to use the framework in

a cooperative manner, aiding in the distributed construction of a word list and

dictionary for Maltese.

The system was designed in a distributed fashion, in which users are able to

download the necessary tools, and then work and connect remotely to the main lexicon

server. The advantages of such an approach are enormous, the most evident of which is

the distribution and delegation of work not only to a `closed' number of researchers,

but to anyone that wishes to participate in the word list construction. An online

accessible dictionary, aiming to reach the quality of well known works, has also been

started, and can be built in such a distributed fashion.

1.1 Organization

This report has been segmented into a series of chapters aiming to provide clarity and

cohesiveness; these will be outlined brie�y below.

Chapter 1. Introduction 3

The chapter following this one presents a general discussion on the subject mat-

ter, as well as ideas that were encountered during the research period. It focuses

on bioinformatics, alignment and distance �nding techniques, morphology analysis

together with clustering techniques. Finally, an analysis of previous work on Maltese

computational linguistics is given.

Chapter three is the �rst in a series of two chapters discussing design, and uses

the ideas mentioned in the preceding chapter to consider the problem of building the

computational lexicon. Details regarding the framework, as well as the client applica-

tion used to access the lexicon remotely are given, together with the advantages and

disadvantages of this approach. An extensive discussion on the clustering techniques

used to provide the lexicon with structure is also given.

The fourth chapter ends the discussion on design, and explains how the external

interfaces (both programming and graphical user interfaces) provide access to the

lexicon services. Also, the website that is used by the system to allow users to register

and use these services is outlined. This chapter concludes by presenting the dictionary

website which is accessible via a web browser, or programmatically by making use of

the APIs provided on the site.

Chapter �ve discusses the results that were obtained by our clustering algorithm

discussed in Chapter three, and also compares and contrasts our algorithm with others

that were taken from a similar approach used in Arabic. Chapter six concludes this

report by stating possible future enhancements and conclusions.

To support the material discussed in these chapters, three appendices have also

been provided. The �rst appendix includes the test set that was used to evaluate the

algorithms in Chapter �ve, together with a list of a�xes that were used by the algo-

rithms under evaluation. The second appendix attempts to provide an introduction

to the Maltese language and grammar, highlighting the main and commonest points

in the language. The third appendix provides instructions on how the system should

be set up and installed on a new machine.

Chapter 2

Background

This chapter discusses the ideas which surfaced during research period, together with

previous work, not only on other languages, but also on the Maltese language itself.

The three main areas that in�uenced this thesis fall under the �elds of Bioinformatics,

Computational Linguistics and Clustering techniques. As the idea behind this project

came from previous work1 related to bioinformatics, it seems appropriate that these

techniques would be discussed �rst. We then move on to the examination of previous

works related to automated morphology �nding, ending by a discussion of clustering

techniques and a review of the work done on Maltese. The order of the subsections

in this discussion is imposed by the order of relevance that these have with regards

to this project.

2.1 Bioinformatics

With much research going on in the �elds of molecular biology and biochemistry, the

collection and sequencing of various genomes and proteins belonging to several species

has been successfully completed. Yet, with the sheer amount of research that is going

on world wide, tremendous data buildup is occurring, and therefore, e�cient storage

and retrieval of data is mandatory. Several publicly accessible databases exist2, so

1This was an Assigned Practical Task last year.
2Examples of such databases include the DNA Bank of Japan (DDBJ), GeneBank and the Europe

Molecular Biology Lab (EMBL). These three databases collaborate daily with each other, and ex-
change their information so that virtually, all three data banks share the same data on any given day.
Some of these banks provide submission tools which allow a researcher to annotate sequences and
submit them to these banks, where they can be later reviewed by scientists and rejected/accepted
into the collection.

4

Chapter 2. Background 5

that gene and protein related data is well maintained, and made accessible to the

public. As is apparent in subsequent chapters, some of the ideas that these databases

use have been adopted in this project.

2.1.1 Sequence Alignment

Several interesting areas exist in this �eld but the one that we are interested in, and

that is directly related to the project is that of sequence alignment. Put simply,

the task of aligning a pair (or more) of sequences is to write the sequences to be

aligned, one in each row, and then, by either adding gaps (denoted by `-') or allowing

mismatches, try to match as many of the letters in the two sequences as possible by

writing them in the same column. When sequences are found to be similar (i.e. yield

an acceptable number of matches), it is more probable that these share some common

characteristics, such as their structure. We now de�ne some basic terms which will

be used throughout this discussion.

De�nition 2.1 (Morpheme) is the smallest meaning-bearing unit in a word.

De�nition 2.2 (A�x) For our purpose, an a�x is a morpheme which is glued to

a stem (or word) to produce a new word with a meaning somewhat related to the

original stem. We will identify two types of a�xes, namely pre�xes and su�xes.

Pre�xes are attached to the beginning of the word, while su�xes are attached to the

end of the word. In�xes are also considered as a�xes.

De�nition 2.3 (Stem) A stem can be de�ned as a substring of a word that is free

of its a�xes. It is usually the base form for a word.

De�nition 2.4 (Root) A root is a set of consonants which identify a word. In

Maltese, the root of a verb is the set of consonants of the third person singular (past)

which is also called the mamma. In the case where the mamma does not exist, the

consonants of the simplest noun are taken3. Note that a root may not be unique, and

the same root may imply a di�erent word altogether.

The class of Semitic languages, like Arabic, Hebrew and even some parts of Mal-

tese, relies on the concept of roots. Unlike Indo-European languages, which are stem

3For example, the verb ba§§ar (he sailed) does not have a mamma, but we use the noun ba§ar

(sea) to extract the roots
√
B�R.

Chapter 2. Background 6

based, and preserve their stem during morphology, Semitic languages only preserve

the root4 and thus, are more di�cult to deal with, especially when in�xes introduce

new consonants even between the consonant of the root. Moreover, vowels have little

meaning in Semitic languages, and these can easily change between one word form and

the other. The concept of alignments can be readily applied to such words, primarily

because of their �xed root patterns. The order of the root consonants is preserved

during word formation, and thus, in a similar fashion to genomes, the existence of

residues (which in this case are consonants) give a good indication of whether words

are related or derived from the same word.

There are mainly two di�erent types of alignments that can be performed over

sequences: pair-wise and multiple sequence alignments. These will be brie�y discussed

below.

The Pair-wise Alignment Problem

Two ways in which a pair of sequences can be aligned exist. The �rst type of align-

ment, referred to as global alignment, is performed over the entire pair of sequences.

The second type, which is carried out on speci�c regions of a given pair of sequences

is known as local alignment. These two types of pair-wise alignment techniques are

reviewed below.

We �rst start by discussing the global alignment problem. The aim of global

alignment is to try and �nd out an alignment (out of the potential hundreds of

others) which is optimal. Consider the two sequences X = abcd, and Y = aebcde.

Two possible alignments would then be:

A=

{
a-bcd-

aebcde
B=

{
abc-d-

aebcde

It is clear that alignment A is more optimal than alignment B, since there is a

greater number of letter matches than in the second alignment. The job of �nding

out the best possible alignment is done by assigning weights to the three di�erent

situations that can occur in any given alignment. These are:

1. Match: a match occurs when two identical letters are aligned in the same col-

umn. Any sequence alignment algorithm should aim for the greatest number of

4In some Maltese words deriving from Semitic, this is not always the case (verbi neqsin):
tar (

√
TJR) �ew ; tajra kite, where

√
is used to denote the root.

Chapter 2. Background 7

matches.

2. Mismatch: this is when two mismatching letters are aligned in the same column.

3. Gap: denoted by a hyphen in the above sequences. The function of the gap is

to shift the entire sequence to the left. Usually, the goodness of an alignment

is determined by its high number of matches and its low number of gaps. Gaps

tend to be discouraged, either by simply assigning negative weights to each

gap, or else, by using di�erent penalties for �rst introducing a gap, and then

elongating it.

Scores to matches, mismatches and gaps can be assigned either by using a simple

scoring system, or else by using a scoring matrix. This scoring matrix contains costs

for the di�erent operations related to each letter in the language being used, and

therefore, on each operation taking place, this matrix is consulted, and the corre-

sponding score is applied. Examples of such scoring matrices for protein amino acids

include the Percent Accepted Mutation 250 (PAM250) by Dayho�, or the blosum

substitution matrix 62 (BLOSUM62).

The process of �nding the highest alignment score can be carried out either by

an exhaustive search, having an exponential complexity, or else, by using dynamic

programming techniques. The intuition behind dynamic programming algorithms is

that a problem can be solved by �rst solving sub-problems, and then combining them

to yield the �nal solution. Usually, intermediate solutions to sub-problems are kept in

a table or matrix, which the algorithm can refer to during its computation (Jurafsky

and Martin, 2000, pg. 155).

The Needleman-Wunsch algorithm (1970) for computing global pair-wise align-

ments is a dynamic programming algorithm which is able to compute the optimal

alignment in O(m× n), where m is the length of the �rst sequence, and n the length

of the second sequence (Mount, 2001, pg. 72). This algorithm, which involves three

steps, works as follows. It �rst creates and m by n matrix (this matrix/table is used

for computation, and has nothing to do with the scoring matrix), and then, initial-

izes the �rst row and column with zeros. Then, it progressively computes the score

for each cell, starting from the upper-left corner, and gradually moving towards the

bottom-right corner. Apart from computing the scores, the algorithm sets up trace-

back pointers which will be used to trace back the computation matrix, and then,

retrieve the alignment with the highest score. Note that there might be more than

Chapter 2. Background 8

one alignment with the same high score. The last step would be to trace back into

the computed table, and retrieve the best alignment(s).

Let us de�ne the scoring function σ which produces the score associated with its

input. Thus, σ(x, y) returns the score associated with x and y. This score can be

retrieved either by using a simple scoring system, or by searching into an appropriate

scoring matrix. Also, de�ne the score of an alignment for a pair of sequences X =

a1, a2, a3, . . . , am and Y = b1, b2, b3, . . . , bn at cell (i, j) to be S(i, j). Then while the

matrix is being �lled, the score for each cell can be the result of either S(i, j) where

ai = bj or S(i, j) where ai 6= bj, in which case:

1. ai is aligned with bj and there is a mismatch. In this case the score at the current

cell (i, j) is S(i−1, j−1)+ mismatch score; i.e. S(i, j) = S(i−1, j−1)+σ(ai, bj).

2. ai is aligned with a gap. In this case, the gap penalty is applied, yielding

S(i, j) = S(i− 1, j)+ gap penalty; i.e. S(i, j) = S(i− 1, j) + σ(ai,−).

3. bj is aligned with a gap, in which case the gap penalty is applied, giving S(i, j) =

S(i, j − 1)+ gap penalty; i.e. S(i, j) = S(i, j − 1) + σ(−, bj).

When all three scores have been computed, the maximum value is retained in the

current cell being processed. To summarize the above:

S(i, j) = max

S(i− 1, j − 1) + σ(ai, bj)

S(i− 1, j) + σ(ai,−)

S(i, j − 1) + σ(−, bj)

(2.1)

The trace-back pointers are set up by pointing to the (previous) cell which con-

tributed to the highest score in the current cell in question. When the entire m × n

matrix is computed, trace-back is performed starting from the lower-right corner,

moving towards the upper-left corner, considering all possible alignments on the way

(if the algorithm is to return more than one).

One disadvantage of the Needleman-Wunsch algorithm is that it computes the

alignment of two sequences in a general, global manner, where it may be the case

that there are speci�c regions of sequences having high similarity, suggesting that the

sequences are homologous in some way or another. In global alignments, this detail is

lost due to the fact that other matches or mismatches in the sequence outweigh these

few regions of high similarity.

Chapter 2. Background 9

S(i, j - 1)

S(i - 1, j - 1)

S(i - 1, j)

+σ(-, bj)

+σ(ai, bj)

+σ(ai, -)
max

Figure 2.1: Computing the scores in the Needleman-Wunsch algorithm.

The Smith-Waterman algorithm (1981) addresses this problem by aligning a region

from one sequence with another region in the other sequence (Mount, 2001, pg. 73).

Like the Needleman-Wunsch, it is based on dynamic programming, and has the same

space and algorithmic complexity. As its name implies, the output of the algorithm

is not an alignment involving all the two sequences being analyzed, but rather an

alignment between certain regions of the sequences.

The Multiple Alignment Problem

The pair-wise alignment problem can also be extended to cover more than two se-

quences. The multiple alignment problem is very similar to the pair-wise alignment

problem, since we can also calculate the score of a sequence using the σ function

which takes a variable (more than two) number of parameters. Thus, if for example,

we align four sequences A, B, C,D, the σ function will be σ(ai, bj, ck, dl).

When calculating the scores of a pair-wise alignment, there are four possible ways

of obtaining the score of a cell, namely, σ(ai, bj), when ai matches or mismatches bj,

σ(ai,−) when ai matches a gap, and σ(−, bj) when bj matches a gap. In a similar

fashion, this process has to be extended to multiple alignments, and clearly, with four

sequences there are 16 (24) comparisons to make. In essence, the algorithm displays

an algorithmic complexity, and therefore, as the number of sequences and their length

increases, the problem becomes unfeasible to solve. Usually, heuristics are employed

to approximate to a satisfactory solution.

Chapter 2. Background 10

2.1.2 Distance Measurement

Sequence alignment and distance measurement are two closely intertwined concepts,

and are often used interchangeably. In this report, we will refer to them as sequence

comparison. The result of sequence comparison is either optimal distances or optimal

comparisons, like alignments for instance (Sanko� and Kruskal, 1999, pg. 31). A

relatively simple application of distance would be for example to judge whether two

protein sequences or genomes share the same common ancestor. If say, the distance

between them is small enough, where the meaning of `small' can be bound by some

constant, then one might say that they are homologous. Of course, large distances

between sequences do not imply that these are non-homologous, but that maybe

their relation is obscured by the fact that they may have had common ancestry in the

distant past. In a similar fashion, a small distance between two given words would

imply that they either share parts of the stem or of the same root; large distance would

either mean that the words are orthographically unrelated, or else the morphology

(analogous to mutation) is so complex that any evidence of similarity is almost wiped

out.

To aid our discussion in relation to distance measurement, we will de�ne the

following:

De�nition 2.5 (Metric) Usually in mathematics, distance, denoted by the function

d satis�es the metric axioms

1. Non-negative property: d(x, y) ≥ 0 for all x and y.

2. Zero property: d(x, y) = 0 if and only if x = y.

3. Symmetry property: d(x, y) = d(y, x) for all x and y.

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x and y.

Although we are interested in the above properties, some distance functions do not

necessarily obey all of them.

There are several types of distance functions one might use, some of which are

more commonly known:

1. Euclidean distance in 2-D: de =
√

(x1 − y1)2 + (x2 − y2)2

2. City block distance in 2-D: dcb = |x1 − y1|+ |x2 − y2|

Chapter 2. Background 11

3. Hamming distance, de�ned for strings of the same length. For two strings X

and Y , the hamming distance is the number of places in which those strings

di�er.

4. Levenshtein distance, de�ned for strings of arbitrary length. It counts the num-

ber of insertions, deletions and substitutions that are needed to change one

string into another.

Ordinary variables which characterize a single unit of study, such as for example,

the weight of a person, or the length of a string, are called monadic variables, whilst

variables characterizing pairs of units of study, such as the di�erence in weight be-

tween two persons, or the di�erence in length between two strings, are called dyadic

variables (Sanko� and Kruskal, 1999). Some methods of analysis, such as clustering

algorithms, require dyadic input, and therefore, distances measures like Levenshtein

distance are useful in evaluating the distance between two given strings. In this section

we concentrate on this type of distance primarily for the fact that we are interested in

the distance between two strings. However, as we shall see, other measures of distance

are employed in subsequent chapters.

Levenshtein distance is an instance of a minimum edit distance algorithm, and in

its simplest form uses the weights: 1 for insertions and deletions, and 2 for substitu-

tions. In this version, substitutions can also be disallowed since a substitution can be

achieved by a deletion followed by an insertion. Alternatively, instead of using �xed

weights, one can use a weight matrix similar to the one discussed in section 2.1.1.

The advantage of using a weight matrix is that we are allowed to specify di�erent

weights for di�erent operations. For example, in Semitic languages, consonants play

a much important role than vowels or weak consonants. Therefore, we might want to

give the former larger weight than vowels or weak consonants. This type of Leven-

shtein distance, where di�erent costs are associated to the several editing operations

is known as weighted Levenshtein distance (Fred and Leitão, 1998).

The basic Levenshtein distance algorithm, which is based on dynamic program-

ming, makes use of a table or matrix to keep its intermediate calculations (once again,

this is independent of the weight matrix). Similar to the sequence alignment algo-

rithm, it is able to compute the minimum edit distance in O(m × n); m being the

length of the �rst sequence, and n, the length of the second sequence.

Let X and Y be two sequences where X = a1, a2, a3, . . . , am and Y = b1, b2, b3, . . . ,

Chapter 2. Background 12

Insertion weights ω(ε, bj)

Deletion weights ω(ai, ε) Substiution weights ω(ai, bj)

0

Figure 2.2: The weight matrix that can be used to weight the various operations used in
calculating the distance. A similar matrix can be used in the pair-wise alignment algorithm.
If the distance function is to follow the zero property of the metric axioms, the values on the
scribbled diagonal should be set to zero.

bn. We will call X the target string and Y the source string5. Also, let us de�ne the

distance at a given cell (i, j) to be D(i, j). In a similar vein to the σ function, the ω

function for x and y can be used as follows:

1. ai is substituted with bj. In this case, the score at the current cell (i, j) is

D(i− 1, j − 1)+ substitution score; i.e. D(i, j) = D(i− 1, j − 1) + ω(ai, bj).

2. ai is deleted from target. In this case, the deletion score is applied, yielding

D(i, j) = D(i− 1, j)+ deletion score; i.e. D(i, j) = D(i− 1, j) + ω(ai, ε).

3. bj is inserted into source, in which case the insertion score is applied, giving

D(i, j) = D(i, j − 1)+ insertion score; i.e. D(i, j) = D(i, j − 1) + ω(ε, bj).

Note that the empty string is denoted by ε in the above. When all three have

been computed, the minimum is taken and assigned to the cell being processed. To

summarize:

5The source sequence is the string we are changing (by using the insertion, deletion and substi-
tution operations) into the target string. In our explanation, the source string is the placed along
the side of the distance table, and the target is placed along the top.

Chapter 2. Background 13

D(i, j) = min

D(i− 1, j − 1) + ω(ai, bj)

D(i− 1, j) + ω(ai,−)

D(i, j − 1) + ω(−, bj)

(2.2)

Similar to the sequence alignment algorithm, it involves three steps (the third

step is optional), the �rst one of which involves creating the m by n matrix used

for computation, and initializing its �rst row and column by using the weight scores

respective to the source and target strings. Initialization for the source is done by

computing D(0, j) + ω(ε, bj) for j = 0 to n. Similarly, for the target sequence, ini-

tialization is done by computing D(i, 0) + ω(ai, ε) for i = 0 to m. Note that for this

purpose, an extra row and an extra column are added so that the empty string ε is

included. Thus, the distance matrix is actually [m + 1, n + 1].

The computation step is done by starting from the top-left corner (0, 0), and

gradually moving towards the bottom left corner (m,n). If the third step is to be

implemented, then trace-back pointers must be set up so that when computation is

over, the list of operations (insertions, deletions and substitutions) can be retrieved.

Pointers are set up by pointing to the (previous) cell which contributed to the lowest

score in the current cell in question. Trace-back is then performed in a similar way

to that of pair-wise sequence alignment. Note that the distance between the source

and target sequences is contained in cell (m, n).

2.2 Morphology

Although in this project, we do not speci�cally aim to examine the morphology of

individual words of a language as whole, there are some techniques about the subject

that have been employed in the project, and therefore, it is appropriate to give a

general overview of the work that has been done in this �eld. The techniques that

are of interest to this project involve automated methods of morphology analysis, and

therefore, literature which did not have this objective was not taken into consideration,

and as a consequence, will not be mentioned here. This was done because �rstly, one

of the project aims was to provide an automated means of extracting a�xes from a

piece of text, and secondly, there are presently no electronic dictionaries or thesauri

which could assist us in our task, thus this was our only feasible option.

The construction of a morphological analyzer for the language in consideration

Chapter 2. Background 14

k i s s i r t e k
f a l l e j t e k

q t i l t e k
s p a r a j t e k

i n s e j t e k
ċ a f ċ a f t e k

s l a ħ t e k
s i b t e k

m a r r a d t e k
s r a q t e k

f i t t i x t e k
ġ e n n i n t e k

k e l l i m t e k
ħ a m m i ġ t e k

high entropy

Figure 2.3: The entropy measure allows the Harris' algorithm to detect the presence of
morpheme boundaries.

normally involves considerable amount of work by expert linguists. Most often than

not, this process is expensive, time-consuming, and even not applicable to all lan-

guages; this normally requires us to make certain assumptions about the language

we are dealing with. For example, if we are dealing with English, our assumption

would be that a word consists namely of a pre�x, a stem and a su�x. If on the other

hand, we are dealing with agglutinative languages such as Turkish, then a stem may

be followed by more than one su�x. Mixed languages like Maltese may either involve

the use of a stem (if the word is of Romance origin) or a root (if the word is of Semitic

origin). Luckily for Maltese, both semitic and romance words usually use the same

set of a�xes when verbs are being conjugated (Aquilina, 1987-1990). The two types

of morphology analysis that we came across are presented concisely below.

2.2.1 Morphemes over a Language

A �rst approach to analyzing morphology automatically was proposed by Zellig Harris

in 1955. The idea behind his approach was to identify the morpheme boundaries

leading indirectly to the discovery of stems. Distinguishing this method from the

rest was the fact that it made use of corpora, and also employed the idea of entropy,

Chapter 2. Background 15

Morphemes already found (step 1)

-at

-ajt
-na

s k o r j a
s k o r j a j t
s k o r j a t
s k o r j a j n a
s k o r j a j t u
s k o r j a w

-ajna -ajtu
-aw

-at

-ajt
-na -ajna

Morphemes resulting from step 2

(4/6 < 0.5)

Figure 2.4: The algorithm proposed by Déjean. The su�xes in italics denote those found
in step 1. The su�xes in bold are those that will be accepted, since the words containing
su�xes from step 1 amount to more than one half (4/6) the total words presented.

that is, the number of di�erent letters that may appear after a given word segment

(Fig. 2.3 on the previous page). The increase in entropy for a given letter indicates

a probable morpheme boundary. This algorithm works reasonably well providing

the corpus being used contains enough variants of the same stem. Indeed, wrong

segmentations can be generated.

Another approach taken by Déjean, which was inspired by Harris' algorithm aims

to �nd the morphemes of a language (like Harris) rather than discover word-related

morphemes. The idea is to improve on Harris' algorithm by dividing the word segmen-

tation process into three separate phases. The �rst phase involves applying Harris'

algorithm, retrieving a list of the most frequent su�xes6, and then �ltering this list by

using a threshold of 100 (Déjean, 1998). The second step further augments the �rst

list of su�xes by segmenting the words with the help of the su�xes already generated

in the �rst step. These are obtained by examining a given sequence of letters, and

if the remaining sequences of letters (from this point till the end of the word) corre-

spond to the morphemes already found, and the number of matches exceeds half the

morphemes found in step 1 (su�xes in this case), then the others are also accepted

as morphemes (Fig. 2.4). The last step involves segmenting the words by matching

the longest possible su�x under the assumption that the longest su�x contains one

or more morphemes7 and therefore, is the most appropriate.

6Although su�xes are being mentioned here, the algorithm can be easily adapted to pre�xes by
reversing the letters of a word.

7In fact, this algorithm does not generate `split' morphemes, and therefore we would expect to
�nd such su�xes as `-ment' and `-ments', instead of `ment.s' where the period signi�es a further
morpheme boundary.

Chapter 2. Background 16

qtiltulek qatlet qatilni
webblek webblet webbilni
ħabbejtlek ħabbet ħabbni

qtiltu qatl qatil
webb webbl webbil
ħabbejt ħabb ħabb

lek
et

ni

Total characters = 66

Total characters = 52

Figure 2.5: An example of MDL, where by �nding an appropriate set of su�xes, the
description length was reduced by 14 characters.

2.2.2 Morphemes over words

Whereas in the previous subsection we have discussed algorithms that enable us to

�nd su�xes (or pre�xes) over the language as a whole, in this section we consider

more advanced algorithms able to associate sets of a�xes with words. The �rst

two methods that are mentioned employ the notion of Minimum Description Length

(MDL). The idea behind this approach is to try and compress as much information

into the smallest possible description; similar to the way in which learning takes place

in humans, where out of a potentially in�nite amount of information, the brain is able

to encode in some compact way this information, and usually the more the number

of generalizations, the better the learning. Fig. 2.5 illustrates the idea behind this

concept.

One such method making use of the MDL concept is discussed in Goldsmith

(2001), in which he proposes a statistically, MDL-based, knowledge-free method able

to learn the morphology of words in a given corpus of text, even as little as 5000

words. This method is aimed at Indo-European, particularly those languages which

are `stem + su�x'-based. The main idea behind this model is to search iteratively

for the morphology with the smallest description length.

Bootstrap heuristics are used to give the algorithm an initial hypothesis of what

stems and su�xes are, and then by using these, start an iterative search, looking for

the morphology which yields the smallest description. Two bootstrap heuristics are

discussed, the �rst one of which �ts a Boltzmann distribution to the probabilities of

Chapter 2. Background 17

each of the n cuts that can occur in a word having n characters. This augmentation

of probabilities was done so that long su�xes and stems are favored over the shorter

ones.

The second heuristic originates from the fact that the algorithm is targeted to-

wards the identi�cation of su�xes. Starting from the back of a word, and under the

assumption that no su�x contains more than �ve characters, n-grams for 2 ≤ n ≤ 6

are extracted8. Then, by rating these appropriately, the top 100 are chosen as the set

of candidate su�xes. After bootstrapping, the algorithm computes the cost of the

morphology in question, and if it is found out that the latter is more compact than

the previous morphology, the most compact one is retained and the other discarded;

in this way the model is optimized gradually.

Goldsmith makes use of the notion of signatures, which are structures composed

from a stem followed by an alphabetized list of su�xes that the stem can take. Two

lists, one containing stems and the other containing su�xes, are maintained, and using

pointers, signatures can be appropriately composed by pointing to stems and su�xes

from the lists mentioned. This structuring of signatures is recursively de�ned, so that

su�xes containing other su�xes are properly stored9. Incremental heuristics are used

during the morphology search, and these include discarding signatures appearing with

only one stem, or shifting the stem-su�x boundary to the left.

The work due to Kazakov (1997) is another technique based on MDL, also falling

under the class of unsupervised learning. However, this method relies on Genetic

Algorithms (GAs) to produce an appropriately evolved morphology. The motivation

behind this is that

�A large search space and the lack of applied algorithms are good premises

for the use of GAs.� (Kazakov, 1997)

For the algorithm to be able to process words, morpheme boundaries are encoded

into integer vectors, where each integer in the vector corresponds to an index where

the morpheme boundary is located in a word. These vectors are directly used as

chromosomes and fed into the GA. The mutation operator for this purpose was de�ned

as either a shift of the morpheme boundary to the left or right, or as a random choice of

8In this heuristic, a word is assumed to end with the stop symbol `#'. Thus `hello' would be
written as `hello#'.

9This phenomenon is extremely common in Maltese, like for example: ksirthielux = ksirt (broke,
past.) + hie (her, 3rd. pers. sing. fem. obj.) + lu (his, 3rd. pers. sing. masc. subj.) + x
(negation), meaning �I did not break his (fem.) thing�.

Chapter 2. Background 18

the boundary in an allowed interval. In a similar manner to Goldsmith, the goodness

of the morphology is estimated by the number of characters that are involved � the

lesser this number, the more compact the morphology is.

A last technique that shall be discussed attempts to analyze the morphology of

Assamese � a major Indian language of the Indic branch of the Indo-European family

(Sharma et al., 2002). The technique used here, although di�erent from that used

so far, employs the idea of characteristics, which is somewhat similar to the concept

of signatures used by Goldsmith. In any set of words, there are some cases in which

one word can be derived from some other word in that set. This is de�ned by a

decomposition, where a word derivative is made up of the base (analogous to stem)

and the rule (su�x). Clearly, di�erent word derivatives can be created by changing

the rule for a given base. A base may also be recursively de�ned in the sense that it

may well be a derivative with respect to another base10.

The method for obtaining the characteristics of a word is split into one preprocess-

ing phase and three steps. The preprocessing involves reading the input text and

sorting it into a list. Then, for each word w in the list, the algorithm tries to identify

a base b and a su�x s so that w = b+ s. If such a word is found, then the word is de-

composable, else it is marked as not decomposable. For each word obtained, all those

decompositions containing b as a base are counted. Likewise, all those decomposition

containing s as a su�x are also counted. Then, the following �ltering rule is applied:

decompositions having a rule with a very low value (typically 1), and bases with a

very high value (these usually signify short bases which are often part of a su�x) are

discarded.

The second phase considers those words which were not decomposable in the �rst

phase, and tries to use the rules identi�ed in step one so that potential derivatives of

derivatives are identi�ed. In the last phase, the words in the list and their correspond-

ing su�xes are combined to form the word characteristics. With more bases obtained

from the second phase, the �rst and second phases can be repeated in order to de-

compose the words further, until their base form is reached. Since in this language,

and in many others, su�xes can contain other su�xes within, preference is given to

the longer su�xes when a decomposition takes place. This way, the longer su�xes

can gradually be reduced to shorter ones, where the longer su�xes are composed of a

series of `sub-su�xes'. Even though during word decomposition, the aim is to reach

10Goldsmith also employs a similar recursive de�nition for signatures.

Chapter 2. Background 19

the base forms, it is apparent that

�an analysis based simply on the detection of presence of common sub-

strings may fail to detect decompositions where the spelling of the derived

words is not simply a concatenation of the base word but a modi�cation

of that.� (Sharma et al., 2002)

This is very true not only for Assamese, but especially for Maltese where all

Semitic-based words exhibit a high amount of in�exions, primarily because of verb

forms as well as weak verbs and other additional in�xes. Unfortunately, this method

does not specify how to deal with such cases.

2.3 Clustering

In this project, clustering is of signi�cant importance and interest since one of the

tools that must be provided to the linguist is that of clustering a set of words11.

Indeed, clustering is a powerful method, namely because it is fully (or almost) unsu-

pervised, and usually partitions data into similar groups without any preconceptions

on the structure of the data. Two major �avors of clustering techniques exist, namely

Hierarchical and Partitional clustering; these are in turn discussed below.

2.3.1 Hierarchical Clustering

Hierarchical clustering refers to the process of creating a hierarchy, that is, organizing

data into large groups which in turn, contain smaller groups, and so on. The output

generated by such an algorithm can be easily drawn as a dendrogram or a tree, where

the most general grouping is situated at the top of the dendrogram, and the speci�c

grouping at the bottom. In the most speci�c grouping, each cluster contains only

one element. Between these two extremes, one would �nd di�erent groups, ranging

from the most speci�c to the more general. One feature of this clustering method is

that an element can indirectly be a member of another cluster, whereas in partitional

clustering, an element can only be assigned to one group (Fasulo, 1999).

The dendrogram can either be formed by constructing it bottom-up or by start-

ing from the top, and proceeding in a top-down fashion. The latter is often called

11One of the aims of the clustering facility was to allow the the creation of clusters related to word
stems or roots, which can later be incorporated into the dictionary so that it would be structured in
a similar way to Aquilina's dictionary.

Chapter 2. Background 20

divisive while the former is known as agglomerative. The algorithm for agglomerative

clustering is given below:

The Agglomerative Clustering Algorithm

1. Start with n clusters, each containing one element.

2. Find the most similar clusters Ci and Cj (see below)

and merge them together. If there is a tie, merge

the �rst pair found. This step should be repeated

n− 1 times.

There exist di�erent measures that can be used to calculate the similarity between

a pair of clusters, but the most common types include the Single-Linkage, Complete-

Linkage, Average-Linkage and Ward's algorithms. In our work, we also used a simple

algorithm measuring the distance between the cluster centroids. The single-linkage

measure is de�ned to be the smallest distance between two elements such that one

element is in cluster Ci and the other in Cj. Formally,

Dsl(Ci, Cj) = min
a∈Ci,b∈Cj

d(a, b), (2.3)

where d(a, b) denotes the distance between the elements a and b (see Subsection. 2.1.2

on page 10). The complete-linkage algorithm is de�ned as the largest distance between

an element in Ci and an element in Cj:

Dcl(Ci, Cj) = max
a∈Ci,b∈Cj

d(a, b). (2.4)

While the single-linkage method states that two clusters Ci and Cj are similar

if the distance between a ∈ Ci and b ∈ Cj is small, thus taking only one similar

pair (a, b), the complete-linkage requires that all pairs in Ci and Cj are similar. The

average-linkage12 algorithm tries to compromise between these two extremes by taking

the average distance between a point in Ci and a point in Cj:

Dal(Ci, Cj) =
1

|Ci| |Cj|
∑

a∈Ci,b∈Cj

d(a, b), (2.5)

12This is also known as the Unweighted Pair-Group Method using arithmetic Averages (UPGMA).

Chapter 2. Background 21

2.3.2 Partitional Clustering

The goal of partitional clustering (known also as k-clustering) is to induce partitions in

a set of data, where each partition contains data that is closely related. This process

takes the form of a divisive strategy, where a chunk of data is gradually split to form

a number of clusters. In these algorithms that are discussed below, the number of

clusters must be speci�ed in advance.

Forgy's Algorithm

One simple iterative algorithm that can be used for such a task is Forgy's algorithm.

This takes k points as its input, thus, yielding k clusters after the algorithm termi-

nates. Seed points can either be chosen arbitrarily, or with some knowledge of the

cluster elements (if possible). Alternatively, one can use an agglomerative clustering

algorithm to generate the initial seed points. Since the algorithm may take a long

time to converge and produce stable clusters, some versions of the algorithm given

below allow the user to restrict the number of iterations.

Forgy's Algorithm

1. Initialize by making the seed points the cluster cen-

troids.

2. Find the nearest cluster centroid for each object,

and assign it to the cluster in question.

3. If no object changed its cluster, stop, otherwise

compute the centroids of each resultant cluster and

go to step 2.

The k-means Algorithm

As its name implies, the k-means algorithm takes as its input k seed points together

with the data to be clustered. This algorithm di�ers from Forgy's in that it clusters

the data in only two passes, without further iterations. However, the cluster centroids

are computed as soon as an object joins a cluster. Its three steps involve:

Chapter 2. Background 22

k-means Algorithm

1. Initialize the clusters with a seed point each. These

seed points are the �rst k samples of the data. (Al-

ternatively, they can also be speci�ed separately).

2. For each remaining object (n − k), �nd a cluster

centroid nearest to it, and assign it to that clus-

ter. After each object is assigned, re-compute the

cluster centroid.

3. Go through the data a second time, and for each

object, �nd the nearest cluster centroid to it. As-

sign this object to the cluster without computing

the cluster centroid this time.

Both the k-means and the Forgy's algorithm have the same goal � that of reduc-

ing the square error for a given number of clusters. In order to achieve reasonable

computation time, not all possible cluster combinations are considered, and for this

reason, they may end up at local minima. Moreover, the choice of seed points, as well

as the order in which they are read dictates the outcome of the resulting clusters.

One of the critical points on clustering is its way in which distance between ele-

ments is evaluated. For our application, �nding the distance between strings using

the Levenshtein distance measure is good but not enough, primarily because related

stems having di�erent pre�xes and su�xes will most likely not be classi�ed as related.

A simple improvement would be to �rst perform some sort of stemming, and then try

to re-cluster. Clearly, this is more likely to work, especially for stem based languages

such as English, Latin and so on. However, for Semitic-based languages such as Ara-

bic and Maltese, this re�nement is not enough for the fact that highly in�ectional

morphology is involved in word and verb construction.

Clustering of Arabic Text

A clustering algorithm which is presented in de Roeck and Al-Fares (2000) deals with

the problem of clustering Arabic words. The idea behind this algorithm is based on an

algorithm presented by Adamson and Boreham (1974) which calculates the similarity

Chapter 2. Background 23

String Bi-grams Unique Bi-grams
fexfex fe ex xf fe ex fe ex xf = 3
tfexfex tf fe ex xf ef ex tf fe ex xf = 4
Shared unique bi-grams fe ex fx = 3

Table 2.1: The bi-gram similarity algorithm. The similarity coe�cient is calculated by
SC = (2 × number of unique bi-grams)/(sum of unique bi-grams in each string), which in
this case is (2× 3)/(3 + 4) = 0.86. (Adapted from de Roeck and Al-Fares (2000)).

between two strings by considering the number of shared substrings13. Note that now

care must be taken to delineate similarity from distance. As opposed to distance, the

greater the number returned by the similarity function, the more those strings are

closely related. Table 2.1 outlines how the similarity function works.

Although the algorithm presented by Adamson and Boreham outperforms the

conventional distance measures, since it takes also the roots and in�xes into account,

it is still misled by a number of factors which are listed below. The algorithm presented

by de Roeck and Al-Fares (2000) tries to deal with these issues:

1. A�xes and light stemming. The SC is kept low due to the fact the pre�xes

and su�xes outweigh the root information, and therefore, words deriving from

the same root but having totally di�erent su�xes will not be clustered together.

This is especially true for Arabic words that tend to be very short, where most

probably, words with a di�erent root but same a�xes will be clustered together.

To get around this problem, stemming is done, but it is lightly executed since

care must be taken so that no root consonants are removed in the process.

2. Weak letters, in�xes and `cross'. The technique referred to as `cross' is used

to deal with the interference that in�xes and weak letters cause. For each weak

letter, this technique adds a new bi-gram containing the letter occurring before

and after the weak letter. This allows the roots to contribute fully towards the

SC.

3. Suspected a�xes and di�erential weighting is used to give low weight

(0.25) to those bi-grams containing weak letters, and to those bi-grams (0.5)

containing suspected non-weak letter a�xes. All the other bi-grams are given a

weight of 1.

13More speci�cally, these will be bi-grams in this algorithm.

Chapter 2. Background 24

4. Substring boundaries is a common technique used when dealing with string

comparison. Here it attaches a `*' at the beginning and end of a given word in

order to allow the boundary letters contribute fully to the SC.

5. SC formula. The formula used in Table 2.1 gives the importance to the shared

unique substrings between words by doubling their evidence. However, since

in Arabic the words stemmed in point 1 will usually amount to three or four

characters, the impact of shared substrings will be high. To reduce this e�ect,

the SC formula is changed to SC = (shared unique bi-grams)/(sum of unique

bi-grams in each string - shared unique bi-grams).

The single-linkage clustering algorithm was used to cluster words, and threshold of

α was applied so that formed clusters only contain those elements having a similarity

score grater than α. Clearly the lesser the value of α the lesser clusters will form �

however these will contain a large number of elements, and possibly a large number

of words which are incorrectly clustered. On the other hand, a high value of α yields

a greater number of clusters which will contain fewer and more related elements.

Moreover, when α is high, there is the possibility that a large number of single word

clusters is created.

2.4 Previous Work on Maltese

The aim of this project is to come up with a framework similar to the one discussed

by Dalli (2002), that is, the creation of a framework which is both extensible and at

the same time usable by linguists. A second objective is that of creating a �rst online

Maltese dictionary, in a similar style to that of Aquilina (1987-1990). Although the

latter dictionary is extremely detailed, and sought by many academics, including law

students, its main problem is that it is rather a `screen shot'14 of the language in those

days. Clearly, with the sudden growth of the media, Internet, wireless systems, new

styles of living, and lately, the introduction of Malta in the E.U., the language that

once was, has changed, and is constantly changing. New loan words are constantly

being introduced into the Maltese language, and therefore, a dictionary on paper,

although useful, is simply not enough. The idea of an evolving lexicon and dictionary

is more appealing, namely because it is constantly monitoring the changes in the

language.

14The last known edition of this dictionary was published around 1990.

Chapter 2. Background 25

The Maltilex project aims to provide an implementation of a computational lex-

icon for Maltese, where information about words and their di�erent word forms can

be readily stored, updated, and used by linguists. As is clearly stated in Rosner et al.

(1998), constructing the lexicon from a dictionary is quite impossible for Maltese, be-

cause �rst of all there exist no such electronic artifacts, and also because di�erent data

descriptions are adopted by di�erent linguists and dictionary writers; this requires an

extra e�ort to integrate such disparate descriptions into a single common one.

One solution to these problems would be to �rst de�ne a common framework, and

then, starting from scratch, collecting as much text as possible to create an initial

word list, which can later be structured in clusters using headwords with associated

lexical items. A headword can be either seen as the representative element of a cluster

or as a sequence of characters which identi�es a set of related lexemes. It need not

be a proper word however. For example, in Aquilina, the headword is either the

mamma (3rd. pers. sing. past. masc.) for Semitic verbs or the stem for Romance

word. Where a mamma does not exist15, some other form of noun (or verbal noun) or

variants of the �rst verbal form are used. For an introduction to the Maltese grammar

refer to Appendix B on page 87.

Clearly, the best way to proceed would be to resort to automated methods of data

processing, since the examination of a large proportion of words by hand is infeasible.

However, these automated tasks can be coupled with manual work to further re�ne

the output of such algorithms. One of the aims of this project is that of providing

the tools needed to facilitate the manual work needed to be carried out by expert

linguists.

Both Rosner et al. (1998) and Micallef and Rosner (2000) discuss the data rep-

resentation used by the Maltilex project. In addition, Rosner et al. (1998) also de-

scribes a template used to annotate words with information about their category, part

of speech, origin, etc. Dalli (2001) discusses the advancements made in the �eld of

data representation standards such as Unicode, and also presents the modi�ed Latin

letters used by the Maltese language16. In our work, we will not use the Standard

Maltese Text Representation (SMTR) since most modern programming languages

and databases already come equipped with Unicode support, and therefore, being

15This is very common where the 3rd. pers. sing. past. masc. does not exist, like for example,
bakar (

√
BKR, to wake up early). In this case, a most probable headword would be bakkar (he woke

up early), which is the second form of the word bakar. Note that still, the root remains the same,
i.e. BKR.

16Maltese is the only Semitic language using Latin characters.

Chapter 2. Background 26

easier to handle and to work with, the UTF-8 encoding will be used. Unicode is also

supported by major software vendors 17.

The �rst known approach taken to create a computational lexicon for Maltese

was taken by Dalli (2002). This work, which introduces a technique called Lexicon

Structuring Technique (LST) uses automated means of clustering without knowledge

of the language whatsoever. LST relies on the phonetic transcription of words as its

main medium of processing. This it does, because �rst of all there are fewer inconsis-

tencies between related word forms than their orthographic counterparts. Secondly,

if an international phonetic language (such as IPA) is used, the application is made

as general as possible.

The algorithm uses a set of weights to calculate the Euclidean distance between a

given phoneme against any other. An incremental clustering algorithm is used, and

clustering is performed directly on the database, in the sense that a word is dispatched

for clustering as soon as it enters the lexicon. Pre-, post- and adaptive optimizations

are used to gradually enhance the results produced by the clustering algorithm. Pre-

optimization involves ordering the list of words being fed to the algorithm by their

similarity, where least similar items are presented �rst. Post-optimization allows the

user to edit the clusters created, and at each edit, rules related to those clusters being

merged or split are generated. These in turn allow the clustering phase to refer to

them to �ne tune the clustering process; this is the adaptive optimization phase. A

special bu�er is maintained by the system so that words that are dubious are not

clustered � instead they are placed in the bu�er until there is enough evidence that

allows them to be placed in a cluster.

The technique used to elect headwords (or representative elements) from a cluster

is based on the idea of multiple alignments (see subsection 2.1.1 on page 9). The idea

is to �rst align all the elements in a cluster, and then elect a headword containing the

aligned letters of that cluster which are above a certain threshold τ . When either a

new word joins the cluster, or modi�cation due to the linguist intervention occurs, the

elements in the cluster in question are re-aligned to re-elect a possible new headword.

Similarly to this project, the system by Dalli provides a set of services to linguists,

and provides for the addition and deletion of words from the lexicon through an

appropriate web interface, providing linguists are subscribed with the system. In

addition, core and extended APIs are provided to the programmer who wants to

17It must be duly noted that the UTF-8 encoding did not exist in 1998, thus the SMTR was used
to deal with the problem of encoding the special Maltese characters.

Chapter 2. Background 27

interface with the system and make use of its services. Other services, such as an on

line tokenizer and Maltese phonetic IPA transcription are also provided18.

18These can be found at http://mlex.cs.um.edu.mt/lexicon.

Chapter 3

Core Architecture

This project aims to provide a generic and sound framework which is practical and can

be used to create a computational lexicon for the Maltese language. The functionality

and design decisions that had to be taken are discussed in fair depth, and for this

reason, two chapters are dedicated to the design of the system. Since the actual

step-by-step implementation of the system is super�uous, we will only highlight those

implementation details which are of considerable importance, otherwise, no reference

to speci�c details is made. This �rst chapter on design deals with the core functionality

of the system, as well as the ideas and motivations behind certain decisions. At the

end, the clustering function that is provided by the system is also discussed.

3.1 Framework Design

Taking a rather practical approach, the �rst major design issue that was faced in

the early days of the project was the programming language to be used, as well as

what additional tools would be needed so that the project would be developed in a

timely fashion. Taking into consideration the fact that a lot of string (mainly Uni-

code) processing would be done, a language which handled Unicode e�ciently was in

need. C# was the �rst language of choice, namely because of its Unicode support,

as well as its ability to scale well with the size of the application, in the sense that

modules and dynamic link libraries (DLLs) can be easily developed. Moreover, the

use of an appropriate IDE like Visual Studio helped a lot during the framework im-

plementation. Since the resultant artifact had to be a desktop application, languages

like Java or C which o�er relatively lesser help when designing Windows Forms appli-

28

Chapter 3. Core Architecture 29

cations (as opposed to Visual Studio) were not considered. Also, thanks to the .NET

Framework which wraps around COM components, using such components is more

straight forward than in Java. Moreover, .NET assemblies can also be used by Win32

applications easily.

The use of text �les for storing data was out of question, and therefore, an appro-

priate database server was needed. Again, the selection of such a database was largely

a�ected by the fact that the system will mainly deal with Unicode strings. Being able

to meet our requirements, the popular open source MySql database was used. This

database also comes equipped with an e�cient data connector written speci�cally for

C#.

3.1.1 Client Application

The idea of having a stand-alone application, rather than a public web interface was

partially taken from the sequence submission model used by some of the major se-

quence databases1. The aim is to provide a relatively simple application which is

able to function in disconnected mode, away from the central database. However, if

sequences need to be annotated or submitted to some sequence database, then this

must be carried out by e-mail. Thus, the job of the submission tool is that of trans-

forming raw sequence data into appropriate database records, ready for submission.

Sta� on the other side would then retrieve such record from their mail, and verify

whether a given record is �t to be added into the database.

Being able to support such a large network of researchers worldwide, the idea

of this model was incorporated into our framework with some modi�cations. The

�rst headache would be to use e-mail as a submission medium, when more innovative

approaches can be used. E-mail is cumbersome, and apart from being ine�cient and

unreliable, extra burden would have to be put on the person(s) verifying submissions

made to the central lexicon database. Therefore, the database is also used as an

intermediary, storing submissions and amendments from clients, which in turn could

be reviewed by a quali�ed person before being admitted into the database (Fig 3.1).

Several advantages are gained when using this framework, as opposed to web

interfaces2. These are summarized as follows:

1One such tool is called Sequin, provided by the National Center for Biotechnology Information
(NCBI), and is compatible with GeneBank, EMBL as well as DDBJ.

2Web interface is used to mean website. These two terms will be used interchangeably.

Chapter 3. Core Architecture 30

Lexicon Database

Actual
lexicon
storage

Intermediary
storage

Admin
tools

Client
tools

Local
files

Client
tools

Local
files

Figure 3.1: How the system uses the intermediary storage to disallow direct modi�cation
of the database by clients. Note that the client software does not include the code for the
administrator functions, and vice versa. This is for added security.

1. Operating in a disconnected and standalone manner allows the user to make

updates and annotations locally, and then, submit updates as needed. Using a

website requires continuous connection to the Internet.

2. Using the client locally, gives the user the opportunity to have his own personal

amendments stored in his local hard drive. Moreover, these �les can be shared

around so that they can be veri�ed by colleagues before being submitted to the

database. This is very di�cult to achieve using only web interfaces.

3. Certain processor-intensive functions, such as clustering, word alignment and

computation of statistics from �les can be o�-loaded from the server, allowing

the latter more room to service clients which are using the dictionary (see later).

4. Websites allow users to use the latest functionality exposed by the server (pro-

vided the website is updated accordingly). This can be also provided in our

case by designing a client application that accepts plug-ins which can be loaded

during runtime.

Chapter 3. Core Architecture 31

5. Some of the systems mentioned in Section 2.4, concentrate mainly on the lin-

guists, thus restricting the task of building the word list (this is one of the aims

of the Maltilex project (Rosner et al., 2000)) solely to them. This is due to

the fact that such a system allows direct modi�cation of the lexicon database.

Apart from being unsafe, in the sense that a linguist might either corrupt the

database, or an external user might hack an existing account, this system cannot

easily be extended. By providing client tools which are publicly available, other

people (including non-university sta�) can contribute towards the construction

of the lexicon/dictionary. This can be achieved by disallowing indirect access to

database, and instead saving such amendments in an intermediary store. These

can then be �nally reviewed/updated by quali�ed people before being commit-

ted to database. A proper administrator tool is available for this purpose. To

break into the database, one would have to �rst steal the administrator tool,

and then get to know the administrator password(s) in some manner.

Although the client and administrator software perform distinct functions, a com-

mon bare bones client application supporting only basic functions can be built. This

can then be later extended easily using the plug-in system. The necessary functions

that are embedded into the client application include user logging in and logging out,

an integrated web browser allowing users to browse the main site (see later), a simple

phonetic character map, and a rudimentary real time messenger allowing users to

communicate with each other. The users have also the option of signing in or out of

this messenger system3. Having the basic client, the respective user can then obtain

the necessary modules and integrate them in. That is, both client and administra-

tor plug-ins are supported by the same piece of software. Any plug-in that speci�es

a pre-de�ned interface required by the common client application can therefore be

integrated into the system without too many problems.

3.1.2 Database Design and Access

The task of designing an appropriate database structure is of paramount importance

since it must complement the design discussed above. The Database Management

System (DBMS) takes the role of a back-end storage, and all data tra�c going in

or out from clients must in one way or another pass through it. To provide a clean

3Although this is the basic client system, one cannot exclude that future updates may involve
modi�cation of this bare bones client.

Chapter 3. Core Architecture 32

Table 1 Table 2 Table n

DAL

Database

Application

DAC 1 DAC nDAC 2

Figure 3.2: All data �ow from/to the database must pass through the DAL. This provides
a standard way of accessing the data.

adapter between the application programs and the actual data store, an extra layer,

which we will refer to as the Data Access Layer (DAL), was introduced. The function

of the DAL is to provide a clean programming interface to the applications making

use of it. For added performance, some of the DAL components make use of the

ADO.NET model, allowing disconnected editing of the data, as well as batch updates

and insertions. Moreover, ADO.NET provides support for reading and writing data-

base records to XML �les, a feature which is indispensable in allowing us to easily

save user amendments on the hard drive.

In designing the DAL components (DAC), a modular approach was taken. We

required that any given table in the database, is equipped with its own DAC, and

therefore, a suitable mapping from programming language constructs to database

records is catered for by the DAC. To further make the DAC as general as possible,

all data input is fed to the DAC in string format, and then, it is up to the DAC in

question to identify the correct database types and convert the data appropriately.

In this way, semi-independent database access was achieved4 (Fig. 3.2).

Care must be taken so that the appropriate tables are structured sensibly, and that

all the necessary relations and restrictions are set. The technique used to build the

database was to place the most basic data items (in this case words) at the bottom of

the data hierarchy and then, augmenting this data by adding further layers (tables),

4In some cases this was impossible to achieve since data conversion, say from bytes to Unicode,
was needed.

Chapter 3. Core Architecture 33

all depending on this data. In this way, if this basic data is changed or deleted, these

changes are propagated up this data hierarchy. More speci�cally, if the basic data

structure is just a word list, this can be augmented by say, a dictionary table allowing

users to add meaning or part of speech categories to words. This was done in order

to exploit the DBMS features like relationships and constraints, thus freeing our code

from such responsibilities. Moreover, custom made user queries involving table joins

can be made so that speci�c data is easily extracted from di�erent tables.

3.1.3 Dynamic Link Library System

One of the advantages C# o�ers over other languages is the easy creation of DLLs and

user controls which can be easily searched during runtime, and dynamically loaded

and executed by the calling application. The plug-in system is built entirely on this

concept, allowing for the easy addition of functionality by simply dragging and drop-

ping DLLs into the appropriate application plug-in directory. Unlike other languages

such as C or C++ for Windows 32, the .NET framework allows us to simply copy

�les to and from directories, and therefore, upon addition of DLLs, no registration

with the system registry (unlike COM and DCOM components) is necessary.

The system has to provide a set of APIs that the programmer can use in order

to programmatically access the data contained in the lexicon. By using DLLs, we

extended this requirement by not only providing components allowing access to the

database (i.e. DAL components) but by also providing other handy components that

were used in this project, which can be downloaded for free and incorporated into

other projects. Such components include User Interface (UI) controls, data structures

such as tries and general tools such as lexical analyzers and standard alignment and

distance calculation algorithms5.

Web services could have been used to provide communication with the server,

but because of extra layers of indirection (SOAP wrapping, etc.), we preferred to

directly connect to the database server to enhance application response times as well

as e�ciency. Moreover, since web services do not directly support encryption, setting

up an encrypted connection could involve additional work from the programmer's side.

Once again, the disadvantage of web services is that they have to live on the server,

and therefore, processor hungry algorithms may slow the server down. Nonetheless,

5The idea here is to promote component re-usability as well as the possibility of open source
development.

Chapter 3. Core Architecture 34

the way DLLs were developed allow for the easy creation of web-services, since these

have to be merely wrapped around. Delegating work into various DLLs allowed us

also to easily create a website supporting other features. The website is discussed in

the next chapter.

3.2 Clustering

One of the main features in the system is the clustering tool that allows a user to

cluster a given text �le of Maltese words. Unlike Dalli (2002), the clustering operation

is not carried out on the lexicon server itself, but rather on the client machine. As

a consequence, clusters created by the algorithm are not added automatically to the

database, but must be submitted manually by the user. This is due to the fact that

the clustering function is not only limited to linguists having administrator's access

to the database, but to any user having a copy of the program. Thus, all clustering

updates are sent to the intermediate store on the lexicon server, where these can be

later reviewed by quali�ed people before being accepted into the database. Although

the advantage of Dalli's system is that the clustering is performed automatically,

where the linguist is able to �ne tune clusters as needed, the advantages related to

our system are:

1. Any user can participate in the clustering process, thus anyone has the chance

of creating, deleting or updating clusters. Of course, the �nal prerogative to

commit data to the lexicon belongs to the administrator(s) in charge.

2. Cluster �les can be moved around, or checked by more than one user, since these

are �rst saved on the client's machine. After reviewing, these can be submitted

for consideration.

3. Clustering functions take place on client side, not on the server side, therefore

o�-loading work from the server.

The clustering algorithm took quite some time to develop, since not much literature

was found on the subject. Of course, several papers on morphology and clustering

have been considered. However, most of them treated `stem + su�x'-based languages,

which are simpler than root based languages.

Chapter 3. Core Architecture 35

�...Arabic morphology is excruciatingly complex...� (de Roeck and Al-

Fares, 2000)

Arabic is of course a Semitic language, based on roots. In our opinion, Maltese

would prove even more di�cult to cluster, for the simple reason that it is an amalgam

of both Semitic and Romance languages. While the general rule in Semitic languages is

to give high attention to consonants, namely because only roots are preserved during

morphology (which is not the case for weak verbs), in Romance languages, the vowels

have to be considered the same as consonants, since these form part of the stem. This

con�icting de�nition will have to do for Maltese.

3.2.1 Methods of Clustering

This subsection discusses several approaches that were taken in order to tackle the

clustering problem6. The �rst three methods fail, but for an interesting reason. These

failures in turn help us build the ideas to come up with an algorithm which gave the

best results out of the three discussed previously.

Levenshtein Distance with A�x Stripping

As already seen in Subsection 2.3.2 on page 21, using Levenshtein distance alone is

not su�cient, and at least super�uous a�xes must be stripped from words. We are

using the term `stripped' on purpose � to be able to stem a given word correctly, a

considerable amount of knowledge about the morphology of the word must be known

by the program. A method where consonant-vowel (CV) templates are used to detect

headwords by literally reverse engineering the morphology of a word in a speci�c word

form, is discussed in Rosner et al. (2000). But analyzing the morphology of words

to that extent was not an original part of the project, so we had to use more simple

techniques, such as those presented in Déjean (1998).

De�nition 3.1 (Stemming) For our purpose, the stemming process is the removal

of any known pre�xes or su�xes from a given word. The result of this stemming

process is a substring, supposedly free from its a�xes. Stemming is performed using

the longest match algorithm, that is, taking the longest a�x possible, and trying to

remove it from the word under analysis. Because we are dealing with roots, and the

6In this project, words are clustered according to their orthographic form.

Chapter 3. Core Architecture 36

majority of Maltese words originating from Semitic have three root consonants, the

stemming algorithm requires that its output word contains at least three consonants7.

Also, stemming removes adjacent double letters and properly encodes the Maltese

letters `ie' and `g§' in order to prevent them from being split. The apostrophe (') at

the end of the word is also encoded into an `g§' to ensure comparability with words

sharing the same root8.

Because of the problem of in�xes (which are not present in `stem + su�x'-based

languages), Levenshtein distance coupled with stemming is simply not enough for

verbs originating from Semitic. An improvement would be to use weighted (or gener-

alized) Levenshtein distance where weights for vowels and weak letters9 are low, and

weights for consonants are high. Although this will partially work to some extent,

the following problems occur:

• Stemming must be performed accurately, so as not to leave parts of a�xes which

can increase the distance between two strings. Also, we cannot a�ord to lose

any root consonants by incorrect stemming. Since we are using a set of a�xes

over the language (see Subsection 2.2.1 on page 14), we cannot pretend this kind

of precision.

• If the morphology is relatively complex (as is the case for the Semitic part

of Maltese), the distance between related words is large. Although it gives

satisfactory results for Romance words, this distance function is not applicable

to Semitic words.

A further augmentation to this idea would be to start o� with a set of weights, train

these in some appropriate manner, and then, use these as weights with the Levenshtein

distance function. The idea here is to train the algorithm on a set of manually

clustered items, and optimize the weights for that training set. By examining the

trace-back results obtained from the distance table used during Levenshtein distance

7In our algorithm, we did not adopt a recursive morphology like Goldsmith did. This is because
our a�xes are found for a language, rather than on a word by word basis. If pre�xes and su�xes
are recursively de�ned, we would be unable to decide in which order they should be applied in order
to form a proper word in the language.

8It is not always the case that an apostrophe at the end of a word signi�es a hidden `g§'. However,
the number of such cases is very small, as opposed to the former case.

9There are six vowels in Maltese: `a', `i', `u', `e', `o' and `ie', while the weak consonants are `j'
and `w'. Note that a weak consonant can very much be part of the root. However, there is no way
to identify such cases, except by using a dictionary.

Chapter 3. Core Architecture 37

computation, an idea of which letters are being substituted can be formed, and a

reduction of their weight value can be done so that for example, certain in�x patterns

can be learned. The problem with this method is that once weights are set, they are

�xed and must be used for new words to clustered. Now, on the occasion that enough

data is contained in the training set, consonants in the matrix will lose their weight,

and gradually, the more the algorithm trains, the more the weight of consonants

reaches the weight of vowels. Clearly, this is undesirable for words originating from

Semitic.

Bi-gram Similarity

The clustering method presented in de Roeck and Al-Fares (2000) was tried on a set

of Maltese words, and proved to be more e�ective than the methods discussed above.

This is due to the fact that apart from performing light stemming, the algorithm

takes into account possible in�xes, and concentrates mainly on the root consonants,

rather than on vowels. Because Semitic (stemmed) words, are relatively short when

compared to Romance words,

�Bi-grams with single character overlap and blank insertion (*) at word

boundaries raised the SC for words sharing a root...� (de Roeck and Al-

Fares, 2000)

This setting was used as a starting point for our experiments and evaluation of

whether this method was suitable for Maltese or not (see Subsection 2.3.2 on page 22).

However, the following modi�cations where applied:

1. Bi-grams containing either weak consonants or vowels were given a weight of

0.75. This is higher than the weights for weak letters used by the original

algorithm, due to the fact that we are not dealing with only Semitic words

(concentrating on roots) but also on Romance words (concentrating on stem).

2. Although the original algorithm uses the formula SC = (shared unique bi-grams)

/ (sum of unique bi-grams in each string - shared unique bi-grams) to reduce

the relative impact of unique shared substrings due to the very short length of

Arabic words, we used the equation SC = (2 × number of unique bi-grams)

/ (sum of unique bi-grams in each string) because once again, we have to deal

with stems as well.

Chapter 3. Core Architecture 38

Clustering was done using the average-linkage algorithm, which however was mod-

i�ed so that clusters remained separated (i.e. not all the dendrogram is built). It

was required that all elements in a given cluster had a similarity greater than some

constant α. During experimentation, varying the value of α had the following conse-

quences for our test set:

• When α was high (> 0.5), the number of clusters increased, and clusters had

relatively very few elements in them. Of course, the clustering precision was high

in the sense that almost all clusters contained elements which were correctly

classi�ed. Much of the clusters had only one element in them.

• When α was low (< 0.5), the number of clusters decreased, and clusters had

a relatively high number of elements. The clustering precision was reduced

greatly.

• When α = 0.5, there was still a high number of clusters compared to the manu-

ally clustered items. Precision was mediocre, but it was the best out of all three

tests.

Upon examining the clustering results, an anomaly was immediately detected:

Maltese words sharing the majority of the root consonants were being clustered to-

gether. However, after further examination, it was found out that the reasons for such

results were devoted to:

Incorrect stemming of words Since a�xes are speci�ed over a language, we can-

not always expect that accurate results are produced. Therefore, in some cases,

a part of the a�x may be left attached to a word, or else, a root consonant or

part of the stem is removed by incorrect stemming. This will have undesired

e�ects later during clustering.

Di�erent word forms for the same root Some of the Semitic words have highly

in�ected word forms, involving the introduction of additional consonants be-

tween the consonants of the root. In some cases, the resultant words are so

diverse that the algorithm fails to relate them. Table 3.1 illustrates this argu-

ment.

Trying to solve this problem by varying α is quite impossible because whatever

this value is, words which are totally di�erent but have close similarity will still get

Chapter 3. Core Architecture 39

Word Stemmed Word Unique Bi-grams Score
marad *marad* *m ma ar ra ad d* mr rd = 8 7
mrajjed *mrajed* *m mr ra aj je ed d* rj ae jd = 10 8.5
Shared unique bi-grams *m mr ra d* = 4 3.75
SC = (2× 3.75)/(7 + 8.5) = 7.5/15.5 = 0.484

Word Stemmed Word Unique Bi-grams Score
marad *marad* *m ma ar ra ad d* mr rd = 8 7
qarad *qarad* *q qa ar ra ad d* qr rd = 10 7
Shared unique bi-grams ar ra ad d* rd = 5 4.25
SC = (2× 4.25)/(7 + 7) = 8.5/14 = 0.607

Table 3.1: As can be seen from the two computations, although `marad' (he became sick)
and `mrajjed' (a small sick person) are related, their score is very low when compared to
`marad' and `qarad' (he removed the stain o� the clothes by rubbing). Note that although
between the latter two words, there is a di�erence of one consonant, the root is di�erent,
and therefore, these should cluster separately.

attracted towards a cluster faster than those words having a same root pattern but

a more complex morphology. This e�ect may be even worse (as in our case) if the

stemmer generates wrong segmentations.

Clustering Based on Root Consonants

Building on the method of clustering discussed above, we will try to tackle the problem

of clustering based primarily on the root consonants. Although this method will fail

in some cases, as seen later, it provided the best results for our test set. This test

data can be found in Appendix A on page 78.

We now start by trying to identify a solution for the two problems encountered by

the algorithm discussed above. The problem of stemming, although cannot be solved

completely, can be signi�cantly reduced by a rather simple solution � not stemming

at all. The second problem can be solved by considering only the consonants of a

word for the time being. Considering the root consonants, and forming initial sets

of words sharing the same root consonants can be easily implemented thanks to a

standard regular expression, one for each cluster. This regular expression (which in

reality is a `personalized' similarity function for a given cluster) will allow us to accept

or reject items in a cluster. The �rst step of the algorithm thus follows:

Chapter 3. Core Architecture 40

1. Sort the list of words to be clustered in ascending order, according to their

length l.

2. For each word, form a cluster containing only that word. While forming the

cluster, set the cluster centroid to the value of the word, and also build the

regular expression by simply taking into account its consonants.

3. Cluster words according to the regular expression (binary similarity function).

For example, the regular expression for the word `maqtul' would be `*m*q*t*l*'.

Note that no stemming was performed. Because of the mixture of Semitic and Ro-

mance words that may be present in the list to be clustered, some Romance words

may be attracted to a cluster containing its stem consonants. This may group unre-

lated words into the same cluster. The sorting of the word list was done so that the

most general items (in regular expression sense) would be grouped at the top. These

in turn will attract the majority of the less general elements to their cluster. Words

with two consonants or less were not assigned a regular expression.

Because words may be incorrectly attracted to a given cluster (due to a Semitic

and Romance consonant clash), a cleanup step is required. All formed clusters are

scanned, and each element in the cluster is pair-wise aligned with the cluster centroid,

and if the di�erence between these two is greater than a certain threshold (the average

alignment distance in the cluster), the element in question is removed and placed into

a bu�er list. The purpose of this list is to hold all those clusters with one element

that are to be clustered in the next step. Optionally, clusters containing one element

are also removed from the original list and placed into the bu�er list.

Calculation of distance between elements (after optionally stemming them) in a

cluster and its respective centroid using global pair-wise alignment is done as follows

(note that this distance function does not obey the metric axioms). First, the two

words are aligned, using the weights σ(ai,−) = σ(−, bj) = −2, σ(ai, bj) = 2 for a

match and σ(ai, bj) = −1 for a mismatch. Once the words are aligned, the following

score is computed:

• If the letter is aligned with a gap, and it is a consonant, add -1.0 to the score,

else if the letter is a vowel, add -0.5 to the score.

• If the aligned letters mismatch, and one of them is a vowel, add -0.5 to the score,

else, add -1.0 to the score.

Chapter 3. Core Architecture 41

• If the aligned letters match, add 0.5 if both are vowels, else add 1.0 to the score.

After cleanup is performed, we remain with a set of clusters containing at least

two elements, as all other clusters containing one element are put into the bu�er list

(if this step is performed). These clusters are an approximation to the seed points in

the list, that is, the number of di�erent roots in the word list to be clustered. Now,

using the seed points together with the bu�er list of one-element clusters, we can

perform a clustering algorithm similar to k-means, clustering the existing elements

using the similarity function in de Roeck and Al-Fares (2000), modi�ed as described

above. During this clustering step, no elements are allowed to change clusters once

they have been placed. This is done so that the e�orts done in the �rst pass are not

lost, in that elements in the �rst pass are virtually correctly placed, and these should

not be permitted to change. In order to provide the user with more control and �ne

tuning, a similarity threshold α can be set and is used so that we are able to control

the intra-cluster similarity. Chapter 5 discusses the results of this algorithm in further

detail.

Although the algorithm did well on our test set, this does not mean that it will

do so on other word lists. In fact, there are some cases where the algorithm is sure to

perform less good. These are presented and discussed brie�y below:

Con�icting consonants As already noted, the problem of having two language

systems coalesced into one makes it extremely hard to cluster words correctly.

This is because Semitic word consonants can be shared by Romance word stems.

Therefore one can expect to �nd Romance words clustered with Semitic words.

Identi�cation of Romance and Semitic words is unfeasible at this stage, and one

would possibly require the use of a dictionary.

Incorrect stemming Although the stemming problem was reduced to a certain ex-

tent, it still remains a di�cult problem to eliminate. Simple a�x stripping

using a�xes over a language will sometimes not be not enough, and incorrect

segmentations can occur. Moreover the clustering results will depend to some

extent on whether stemming was correctly performed. (The algorithm can also

be used by feeding it a�xes from a simple stemming algorithm like the one

discussed by Déjean (1998)).

Incorrect estimation of centroids Despite the fact that the idea of having a cen-

troid for each root makes sense in the context of Arabic words, it is a somewhat

Chapter 3. Core Architecture 42

second-rate approximation for the reason discussed in the �rst point. While

the problem of �nding seed points automatically is NP-hard, we tried the best

method of approximating to a set of `sure' seed points.

Weak Verbs These are those kinds of verbs in which the root consonants appear

or disappear according to the current verb form. The classical example is `tar'

(he �ew) in which the second radical consonant `j' disappears, and one can

be mislead into believing that the root of this word is
√
TR. However, upon

examination of the noun `tajra' (kite), we are able to deduce that the real root

is
√
TJR, where the `j' is a weak consonant (see Appendix B on page 87). These

are very much common in Maltese, and very hard to identify, even by native

speakers not familiar with the Maltese grammar. Of course, we cannot expect

the clustering algorithm to perform well on these. To be able to identify the

roots of such verbs, the use of a dictionary is needed.

The reason we devised this method was because the one by de Roeck and Al-

Fares (2000) coupled with the very complex morphology some Maltese words can

take (see Table 3.1 on page 39), gave a high number of clusters with respect to this

one. Once again the problem was not because of the algorithm, but rather because

of the language intricacies. On the other hand, our method tried to estimate the

seed points, and then, cluster using these as reference. When a particular mixture of

Semitic and Romance words sharing the same consonants is fed, great results cannot

be expected. If however a balanced list is given, satisfactory results will be produced.

This is due to the fact that our aim was to keep the number of clusters manageable.

This e�ect can be reduced by choosing not to remove clusters containing only one

word, during the algorithm clean-up step. If this clean-up step is not performed,

then there will be additional centroids which will be used during the last clustering

phase. In addition, by varying the SC cuto� threshold α, one can vary the numbers

of clusters produced together with their quality.

On the other hand, with the bi-gram clustering algorithm, it is likely that average

results will be produced at the expense of a relatively large number of clusters. The

more the threshold α is increased, the more correct the clusters will be, but the more

clusters will be produced. The reverse e�ect will occur by lowering α. Our main aim

was to try and strike a balance between the two, thus obtaining a reasonable amount

of clusters with the greatest amount of correctly clustered words. For convenience,

the pseudo code of the complete algorithm is given in Fig. 3.3 on the next page.

Chapter 3. Core Architecture 43

Root-Based Clustering Algorithm

Step 1: Approximating centroids.

1. Sort the list of words to be clustered in ascending order,
according to their length l.

2. For each word, form a cluster containing only that word.
While forming the cluster, set the cluster centroid to the
value of the word, and also build the regular expression by
simply taking into account its consonants.

3. Cluster words according to the regular expression (binary
similarity function) and place the clusters in C.

Step 2: Clean-up (before computing any alignments, words
can be stripped of a�xes to increase similarity).

1. Initialize bu�er list B.

2. For each cluster:

(a) Find the average intra-cluster pair-wise alignment
similarity by computing the pair-wise alignment sim-
ilarity between each element of the cluster and its
centroid, storing the total result in d. d/ |ci| −→ δ

(b) For each word w in the cluster, compute the pair-
wise alignment similarity between w and the centroid
−→ D. If D < δ, remove the word from the cluster,
and create a new cluster cnew with this word. Place
cnew into B.

3. Optional Step: Remove all those single-element clusters
from C. Each cluster that is removed should be placed in
B.

Figure 3.3: The �nal clustering algorithm (continues).

The variation of the parameter α in the root-based clustering algorithm provides a

corrective action to the possible incorrect estimation of the initial cluster centroids. By

experimenting with this value, di�erent output clusters are obtained. This combines

the powerful idea of the modi�ed algorithm by de Roeck and Al-Fares (2000), and

our root-based approach to clustering. Setting α to 0 will force the algorithm to

Chapter 3. Core Architecture 44

Step 3: Re-cluster (during re-clustering, words can be
stripped of a�xes to increase similarity).

1. Merge the lists C and B by clustering using the modi�ed
version of the k-means algorithm, using the bi-gram sim-
ilarity function discussed above. Any two clusters can be
merged if the distance between them is ≥ α. Once an item
is considered:

(a) If they were merged, remove the cluster that was
merged from the bu�er list.

(b) If they were not merged (i.e. their similarity was < α,
placed the (single-word) cluster at the top of the clus-
ter list C, and remove this cluster from the bu�er list
B. By placing the cluster in question into C, we
have incremented the possible number of initial clus-
ter seed points, and thus, give this cluster the chance
to participate in having its own set of elements.

2. Output C.

Figure 3.3: The �nal clustering algorithm (continued).

only consider those seed points which were estimated in step 1. By combining the

two approaches together we can reach a compromise between the number of clusters

yielded, as we well as the correctness of those clusters, thus in the worst case our

algorithm will perform as the bi-gram clustering algorithm.

3.2.2 Other Tools

Additional tools have been developed for supporting some of the ideas discussed above,

as well as to help the linguist perform text-related algorithms directly on text �les.

To support the Maltese characters, these �les should be encoded in UTF-8. We will

now brie�y discuss these functions; we will refer to them in Chapter 4.

Alignment and Distance

Both alignment and minimum edit distance (MED) algorithms were discussed in

Chapter 2. Although the MED algorithm was not used in the root-based clustering

Chapter 3. Core Architecture 45

algorithm, it was implemented and included in one of the common DLLs made avail-

able to the programmer. Being based on weights from distance matrices instead of

using �xed weights, both algorithms allow the linguist to align words, or calculate

the distance between them using either a default weight matrix, or else by loading a

weight �le from disk. In addition, the linguist can also modify and view the existing

weights using a specialized weights viewer. The MED algorithm is also able to yield

the operation list used to transform the source string into the target string.

Both MED and alignment can be computed either on pairs of words supplied by

the linguist, or on whole text �les, by computing alignment/MED on each word pair.

Due to the large amount of data that is generated, the user is prompted for a �le

name where these results can be saved. In the case of MED, the application also

writes the operation list next to each word pair, together with the distance between

them, as speci�ed by the weight matrix.

A�x Finding and Stemming

The a�x �nding algorithm provided to the linguist follows that of Zellig Harris (see

Section 2.2.1 on page 14). Such a�xes are not generated per word, but rather for the

whole language. Instead of accepting all the a�xes returned by the algorithm, an a�x

count threshold is applied, and only those a�xes having counts above that speci�ed

threshold are returned. This threshold is the average su�x occurrence, calculated

by dividing the total count of su�xes by the distinct su�x count. Originally, the

algorithm was developed for su�xes, but by reversing the letters of the word, the

same technique can be applied to pre�x �nding. To optimize the algorithm and make

it space and time e�cient, all the data from �le is read into a su�x trie prior to

processing.

The reason that we did not use Déjean's algorithm is that it generalized too

much, and in a language like Maltese, where su�xes are commonly used for both

Romance and Semitic words, parts of the stem or root were being included in the

a�x. Apart from being a good approximate, the algorithm by Harris is very fast

since less processing than Déjean's algorithm is needed.

The stemming function provided here is the same one discussed in the previous

section, that is, a�xes are read from the database, and then, using the longest match

algorithm, words are segmented into pre�x + stem + su�x, if appropriate. Also,

adjacent double letters are con�ated into one.

Chapter 3. Core Architecture 46

Statistics From File and File Joiner

A very simple but useful function is that of examining text �les and extracting the

number of occurrences and percentage of words contained. The word statistics func-

tion is able to automatically �lter out numbers and incorrect characters thanks to the

lexical analyzer written speci�cally for the purpose. Note that this scanner might not

be appropriate for other languages, since it extracts also the apostrophe (') and the

hyphen (-) letters which are part of the Maltese orthographic system.

The �le joiner tool is very handy for joining multiple text �les into one, where the

output �le contains one word per line. This is very helpful for allowing one to create

word lists from separate �les. In order to provide the user with more control, the

�le joiner tool supports the use of replacement rules, which can be used by the �le

joiner algorithm to replace words or characters in the source text, outputting them

as speci�ed by these rules in the target text. This is extremely useful if for example,

we convert a �le from Portable Document Format (PDF) to text, and then correct

misspelt words or letters by replacing them accordingly10.

By no means we aim to reach the quality of tools used for text processing, such

as WordSmith (Scott). However, by starting the implementation of small programs

which can be later integrated into a single application, we can gradually build a satis-

factory suite of tools for Maltese, and perhaps also for foreign languages. Right now,

WordSmith tools does not support Unicode fully, while our program does, therefore,

for the time being, our application will be more attractive for Maltese. Also, as

opposed to WordSmith tools, our program is free of charge.

During the project construction, a basic tool able to search the web for �les con-

taining speci�ed words was constructed. Since it is in its early phase, and due to the

fact that it had to be rapidly developed, it makes use of the searching APIs provided

by the Google search engine11. Google o�ers any subscribed developer the chance of

executing 1000 queries per day � a rather reasonable amount for the fact that the

service is free of charge. Unlike the WebGetter component forming part of Word-

Smith tools, our application is able to deal with lists of words, and also parse relevant

HTML content so that is it automatically saved into text �les without any HTML

tags whatsoever. This makes it easier for the prospective linguist to verify whether

10Conversion can be either done directly from tools such as Adobe Acrobat, or other tools such
as pdftotext for Linux. The advantage of pdftotext is that apart from being free of charge, it is also
able to extract content even from protected �les.

11Details on how to use these APIs can be found at http://www.google.com/apis/.

Chapter 3. Core Architecture 47

text �les are written in an orthographically correct manner12.

12In many Maltese websites, especially those written in the days where Unicode was not widely
established, the modi�ed Latin characters (
c,
g, §, and
z) are written using the standard English
alphabet. These texts, although written in Maltese, are useless, and correction of such �les by hand
is out of question, namely because a lot of Maltese words use this modi�ed Latin alphabet. Luckily,
this trend is slowly dying out, as more local councils, church-related websites and others, are using
the correct Maltese letters for providing their content. This is partly due to the promotion made by
governmental websites and agencies (such as CIMU http://www.cimu.gov.mt/).

Chapter 4

Front End Architecture

The previous chapter discussed the core aspects of the system, namely, the general

framework design, including data access, as well as basic algorithms for clustering.

This chapter builds on top of the preceding one, and it deals with the interface design

� not only of the User Interface (UI), but also of the Application Programming

Interface (API) provided to the programmer. It also discusses in fair depth, the

packages included for use by the normal user and the administrator.

4.1 Client Application and Plug-ins

Whereas functions o�ered to clients over the web by means of browser access tend to

be universally accessible, due to the fact that HTML is platform independent in the

sense that it can be rendered by any web browser, the problem with this approach

is that the machine hosting1 the lexicon services, including the database, web server,

chat server, and possibly other services such as e-mail, will have additional load when

clients start accessing various services such as clustering. Usually, clustering tends to

be very processor intensive, and having say, �fty clients executing clustering at the

same time on one machine (i.e. the server) is very undesirable.

Instead of having a thin client and fat server, we choose the other way round, so

that the server can be free of all processing, except that related to database access,

and additional standard services such web hosting and e-mail. All the other services

1Of course, services such as the database server and web server can be hosted on di�erent ma-
chines, due to the fact that the DAL allows remote connections. However, clustering in our case,
must be executed on a single machine, since it was not implemented in a distributed fashion. Even
if it was, there is a limited number of additional machines that can be used for farming.

48

Chapter 4. Front End Architecture 49

have been moved out of the core of the system, allowing them to be executed on the

client side, in the form of a simple application which is able to connect to the database

to exchange data. Being written in a .NET language, the client can run on any system

supporting the .NET framework, independent of platform and hardware. The .NET

framework for Windows and MONO for Linux are both freely downloadable.2.

The implementation of the client DAL and the administrator DAL is provided

into two separate DLL �les, where the client part is made public. Conversely, the

administrator DAL is kept private, for use by authorized sta� managing the lexicon

database. Similarly, a client set of plug-ins makes use of the respective DAL to provide

access to clients, while the administrator set of plug-ins provides suitable database

access using its DAL. Client plug-ins are made available through the site. Both

client and administrator plug-ins make use of the same bare bones client application;

moreover, an administrator can have both client and administrator plug-ins installed

on the same client application3.

4.1.1 Client Plug-ins

As the DAL is the basic module used to provide a clean interface to the application

and application programmer, it is considered �rst. For the scope of client access,

each DAC deals with two tables, with the exception of the user management DAC.

As immediately obvious, the advantage of having a DAC accessing two tables is that

the programmer using the component does not need to worry about the intricacies

how much tables are being accessed, whether data is cached locally or not, and other

database related details. All he is cares is that there is a set of APIs which he can

utilize to change the data underneath. The DAL handles also data validation as well

as automatic type conversion. Also, by using appropriate documentation tools such as

NDoc4, MSDN-style documentation can easily be generated in the form of compiled

2We do not exclude the fact that some of the light weight functions such as lexical analysis of
text �les and statistics �nding will be deployed also on the server, and additionally wrapped in a web
service. This can be done because DACs are implemented in such a manner allowing them to be used
by any front-end, such as windows forms, web forms and even web services. Additionally, thanks
to the compilation into Intermediate Language (IL), these can be invoked by any other language
targeting the .NET framework, such as VB.NET.

3This bare bones client application is distinct from the client plug-ins. The function of the latter
is to provide access to the `normal' user (referred to as clients or standard users in this report),
while the function of the former is to provide plug-in support so that both client and administrator
plug-ins are made usable by hooking them up in this client application.

4This application can be found at http://ndoc.sourceforge.net.

Chapter 4. Front End Architecture 50

HTML �les.

The reason a DAC would make use of two tables is due to the fact that a standard

user cannot write directly to the database, but on the other hand, can read from

the actual lexicon database in order to be able to get the most current picture of

the lexicon. For convenience, we will refer to the tables where the user is allowed

to write as the amendments tables, and the tables where the administrator has full

access, the main tables. Since we opted to use ADO.NET for data access, we will

introduce another virtual table which we will call the local table. The local table is

simply an XML text �le, containing amendments which have not been yet sent to

the database. These local records are readily accessibly by ADO.NET classes, and

therefore, no XML parsing is needed. Moreover, these local �les, being saved in plain

UTF-8 encoded text, can be easily transferred amongst users, and readily accessible

by Unicode-enabled editors such Windows Notepad.

Once the user has submitted an amendment into the respective amendments ta-

ble, this cannot be undone, in a similar way that once a genome sequence has been

submitted by mail, it cannot be undone. That is why the local table is useful. First

of all, the user does not have to complete and amendment on the spot, but may close

the application, and then continue later (auto saving allows this to be done easily),

or else he can transfer �les around, for further reviewing, before being able to submit

a �nal amendment to the database. Once this amendment is submitted, it is the job

of the administrator to review accept or reject it.

For this project, as well as to illustrate that the concept of plug-ins holds, four

plug-ins for the standard user were created, each of which accesses two tables simul-

taneously to support the design pattern described above. These are complemented by

the administrator plug-ins which process the data submitted by any standard user.

The following were implemented accordingly:

• Word and a�x management.

• Cluster management.

• Dictionary management.

Word and A�x Management

The word and a�x amendment plug-in allows the user to browse words from the

main dictionary table, and then, amend any selected word. Words can be searched

Chapter 4. Front End Architecture 51

by entering any word pre�x, allowing the database to return all those words starting

with that pre�x. This is done so that not all words are loaded into memory at once

(at most, the user can read all words starting with a speci�ed letter). To maximize

database e�ciency, once a query is executed, results are stored locally on the client

side, and the database connection is immediately closed and returned to the database

connection pool. The user can then perform additional searches in the cached data,

where it can be either viewed in grid mode or in record view mode. Once a word is

selected for amendment, the amendment entry manager automatically appears. For

words and a�xes, an amendment can either be a request for insertion or deletion.

When an amendment is made, it is not automatically submitted to the lexicon

database. However, it is automatically saved to disk (the local table), so that if fur-

ther editing is needed, the client can easily select this entry from a list, and modify

it as needed. To be able to send either word or a�x amendments to the database,

any locally stored amendment must be posted. Once this is posted, it is automati-

cally removed from the local storage5. Of course, the user is allowed to create new

amendments without reading from the database. In this way, the client can work on

new amendments even without connection to the Internet.

Cluster Management

Since clustering is performed on the client side, it was sensible to take advantage of

this fact, and allow any user in possession of the client program to contribute to the

clustering function. Similar to the word/a�x plug-in, the user is allowed to browse

clusters in the main table, and either delete a selected cluster, or else update it by

adding or removing words from the cluster in a an easy manner. The application

will then compute a di�erence on the original and new cluster lists to �nd out which

elements changed, and formulate an update request accordingly. Note that before

accepting any cluster amendments, the client must verify that all the words in the

new cluster are present in the database. Once this veri�cation occurs, this amendment

is automatically saved to disk for further editing.

5Note that for any database transaction, no intermediary means are used, in the sense that the
DAC directly connects to the database to perform the necessary transactions.

Chapter 4. Front End Architecture 52

Dictionary Management

The dictionary is a central part of the database structure, since it is layered upon the

basic word list and the clusters table to provide data with additional structure and

meaning. The dictionary is not only for the use of users seeking the meaning of a

word, but also for programs that would like to inquire additional information, such

as the part of speech, origin, gender, etc.

Like the previous plug-ins, the dictionary allows the user to look for words with

a speci�ed pre�x or letter. Additional searches can then be carried out on the local

cache, once results have been read from the database. Any word can be selected and

instantly amended via the dictionary entry amendment dialog. Alternatively, new

amendments can be created for words, but like the cluster amendments process, only

words in the dictionary can be amended. The following information can be amended

by the normal user: part of speech (POS) and related information, pronunciation in

International Phonetic Alphabet (IPA) symbols, and the meaning of the word. A

rudimentary character map for phonetic symbols is provided to aid the user in their

entry.

The part of speech �eld originally was implemented as a string in the database.

Later it was changed into a 64-bit integer so that it would be able to encode the

various attributes of a word. Using the bit �eld facility of .NET, any enumeration

can be easily used as a bit �eld, where bits in this 64-bit integer are set by ORing

the di�erent enumeration members. This feature was implemented in this way for the

following reasons:

• Space in the database is saved by combining several �elds of related information

into one common �eld.

• If additional parts of speech/related information are to be added (which is very

unlikely since these are virtually static for the language), minor modi�cations

are necessary. If these were present as string �elds in the database, then the

structure of the database must be altered, dictating a change also in the respec-

tive DAC.

• Taking also the programmer into consideration, it is in general easier to deal

with enumerations rather than with strings, �rst of all, because enumerations

can be easily combined using logical ORs. Also, the programmer already knows

Chapter 4. Front End Architecture 53

his set of options, since an enumeration typically contains a set of prede�ned

values.

Following the word information template for Maltilex in Rosner et al. (1998), the

following possible values are provided (up to 63 values can be specifed):

None This value is reserved for use by the database.

Part of speech Noun, verb, adjective, adverb, pronoun, conjunction, preposition,

interjection, article.

Number Singular, plural.

Origin Romance, Semitic.

Gender Masculine, feminine, common, neuter.

Tense Present, past, future, past participle.

Others Diminutive, imperative, passive, active, intransitive, transitive, re�exive.

For the three plug-ins above, all amendments posted to the database include the

ID of the user e�ectuating the amendment, as well as the date in which the amend-

ment was submitted. Besides, all three functions allow the user to see all posted

and un-posted amendments. In the case of posted amendments, only un-processed

amendments can be seen, as those which have been processed by the administrator

are removed from the amendments tables subsequent to processing.

4.1.2 Administrator Plug-ins

The administrator plug-ins complement the set of plug-ins provided to the normal

user by allowing the administrator to process amendments and deciding which ones

are to be committed to database and which should be discarded. In addition, all

administrator plug-ins allow direct access to the main tables of the database, that is,

all records can be modi�ed directly. The four administrator components are outlined

below:

Chapter 4. Front End Architecture 54

Word Management

Whereas in the client plug-ins, word and a�x management tools were grouped into a

single plug-in, they are two separate functions from the administrator's point of view.

This was done because the UI of each plug-in is already more complicated in the sense

that there are more functions available, and therefore, by splitting the two functions

in two separate components, a much more logical view of the data is presented.

Apart from allowing the administrator to accept or reject amendments, he is also

able to add, remove and updated words in the database. Since C# supports Unicode

directly, by con�guring a Maltese keyboard, one can easily enter the special characters

used by the Maltese language. Due to the fact that insertion of words is very common,

the administrator is also allowed to insert a list of words in batch mode from a

�le. Note that whereas manual modi�cation of word records will instantly commit

changes to the database, when batch mode is activated, changes are not committed

automatically, in order to allow the administrator to review or correct the list of

words before committing it to the database. Also, during this stage, any modi�cation

(update/addition/deletion) of words is not automatically committed. However, once

changes are committed, the application automatically switches back to instantaneous

committing mode.

A�x Management

The a�x management plug-in is similar to the word management process, and in

a similar way, a�xes can be added, deleted or updated. The a�x addition dialog

allows two kinds of a�xes, namely, pre�x and su�x types. These a�xes will be used

during stemming as well as during the clustering algorithm mentioned in the previous

chapter. The administrator is also allowed to add a list of a�xes from �le. Once

again, the a�xes are not automatically committed to database; the idea is identical

to the one used for adding words. By default, a�xes are read with their type set to

su�x, on the grounds that su�xes are more common than pre�xes and that there

are only a handful of pre�xes in existence. Also, since usually the list of a�xes to be

added is short, one can easily edit the list before committing it to the database.

Chapter 4. Front End Architecture 55

Cluster Management

While accepting and rejecting cluster amendments is a simple business for the admin-

istrator, the DAC underneath must check what words should be added or removed

from the cluster speci�ed in the amendment. To keep things simple, and avoid un-

necessary database access, updates are not performed by calling the SQL update

statement, but instead we follow the idea that an update can be carried out by delet-

ing and inserting a record. This may appear more time consuming, but �rst note that

before a record is deleted it is fetched in the local cache, and only if it is not found,

it is then retrieved from the database. This is due to the structure of the database,

where data is stored in tuples like the following:

<word, headword>

If a headword if removed or changed, additional checks must be �rst made to verify

that database constrains are obeyed. Deleting the word and adding it afterwards

proves more e�cient and also avoids unnecessary code for checking from the DAC.

The administrator is also allowed to insert, delete and update clusters directly from

the database.

Dictionary Management

The dictionary table is very useful, and in fact, its aim is to provide words with mean-

ing and additional information. Also, an additional �eld, allows the administrator to

supply an audio �le that will be used to provide the pronunciation of the word in

question. The all-important structure to the dictionary table is provided implicitly

by the clusters table. Since the keys in the clusters table are the words themselves,

and these are in turn referenced by words in the dictionary table, this cluster struc-

ture is also induced in the dictionary table. This will allow us to categorize words

according to the headword.

Apart from providing functions similar to the ones discussed above (amendment

handling, addition, deletion, etc.), another class was speci�cally built so that the data

in each �eld of the dictionary table is queried. The �eld that is of most interest is

the �eld containing POS and related information. Once the dictionary is complete,

it should prove very useful to other applications, such as those dealing with word

sense disambiguation, and other approaches where dictionaries are needed. For the

convenience of the programmer requiring such a service, this class has also been

Chapter 4. Front End Architecture 56

eLexi

Lexicon
Admin

UITools

Common
Tools

Lexicon
Client

Admin
Tools

Client
Tools

Website

Figure 4.1: These are the components of the system, and their relation with each other.
With the exception of `eLexi', `ClientTools', `AdminTools' and the `Website' components,
these can be used by other programmers to aid them in the development of new plug-ins.

wrapped around in a simple web service. Fig. 4.1 illustrates the components of the

system, and how they are related.

4.1.3 The Common Client Application

Without the common client application, neither the standard user nor the adminis-

trator will be able to use the functionality discussed above. This is because although

both plug-ins encapsulate a lot of features, they are not able to function on their

own, and must be loaded appropriately by the common application. The plug-in

system was successfully implemented thanks to the use of interfaces. An interface is

a contract which binds the implementer of a class with the obligation of specifying

the implementation of those methods and properties declared in the interface. In our

case, these obligations are very simple, and specify only the name of the plug-in, its

creator, and a menu item title which is used by the common client application when

displaying an appropriate title for the plug-in being used. In addition, the methods

for doing any initialization and any cleanup are required, but these can be left empty

if not needed. The things that will be mentioned now apply to both the standard

user and the administrator plug-ins.

Chapter 4. Front End Architecture 57

Figure 4.2: The common client application with the web browser in view.

Apart from o�ering a place where plug-ins can be loaded, basic built-in logging

in/out of users is provided (again, logging takes place via an appropriate DAC built

speci�cally for this task). This login information is stored globally in the application,

and can be easily accessed by those plug-ins needing this information to carry out their

tasks. In addition to this, a web browser control (Microsoft's ActiveX IE control) has

been provided, and this allows the user to connect to the main project website (Fig.

4.2).

A rudimentary chat program is also integrated into the common client application.

Its main use is to allow users and administrators to chat with each other in a real

time manner, and hopefully, increase productivity. Of course much more advanced

programs like MSN messenger can be used, but the advantage of our chat program

is that it allows users on the same network to chat with each other. The only thing

they needed in common is a chat server. The job of the chat server is to maintain a

Chapter 4. Front End Architecture 58

list of connected users, and as a new users connect, forward this list to them using

an appropriate protocol. Therefore, if multiple chat servers are set up on di�erent

machines (only one chat server per machine), multiple `chat rooms' can be created,

although the client can only be connected to one at any one point in time. In practice,

there should be only one chat server on the machine where the lexicon server is to be

hosted.

The original intent of the client was to provide services to a single user, where all

his �les (un-posted amendments) are placed in an appropriate folder, and accessed in

read/write mode during runtime. However, with some additional code, the application

was modi�ed so that it would support multiple users in the sense that as soon as a

user logs in, the application will either search for his �les in the appropriate folder,

and load them into the application, or else, new �les are created if no such �les are

found. Then, the user can take these �les with him, and use them in another client

application on another machine.

4.2 Website

In the previous section, we discussed all the features of the common client application,

together with its plug-ins. We did not mention the tools used for �le processing, as

there were mentioned in the previous chapter; they too form part of the collection of

tools provided to the user. To complement these utilities, the website was set up so

that �rst of all, plug-ins, plug-in and common application updates was well as bug

�xes are made available. Secondly, it allows new users to register and use the system.

Thirdly, the dictionary is made available in read-only mode, so that it can be accessed

via a web browser.

The default page allows the user to access the various links available. A page

where new articles are set up, and a few links where the software can be downloaded

are provided. In addition to these, new users can register with the lexicon server, and

by using an appropriate DAC for user handling, the website can accept new users on

demand. During the registration process, a user must enter his user name (e-mail

since by default, it is unique although checks are still made. The e-mail can also be

used to contact users.), and other details such as his name, surname and country. For

extra security and to force the user to specify a correct e-mail, the password is not

entered by the user, but it is randomly generated by the system, and mailed to the

Chapter 4. Front End Architecture 59

him, together with instructions on how to use the account. Once this password is

known, it can be changed, together with any other details later on. These credentials

are used so that the user can log in and use the application together with its plug-ins.

Note that plug-ins such as those used for amendment submission make use of the user

name to mark which amendment belongs to whom. Any registered user is allowed to

unregister by providing his user name and password.

Although any user can register and download the software, only the standard user

plug-ins are provided; this prevents users from having direct access to the database.

Although the administrator plug-ins are kept private, they still have to make use of

the common client application. This illustrates the generality of our approach, where

the application is not only shared by the two parties, but it can also be extended

easily through the use of plug-ins.

The dictionary page provides a very basic search facility in which information

about words can be displayed in an appropriate manner6. If a �le to the audio pro-

nunciation exists in the respective audio path �eld, then an additional icon, together

with an appropriate link to the �le, are provided. This will allow the user to either

save the �le or play it using some audio player. By entering appropriate HTML tags

in the meaning �eld (during dictionary construction), one can enhance the display of

meaning for a given word or word examples.

The clusters that were constructed earlier now prove very useful in the logical

structuring of the dictionary, and provide the user with the facility to look for related

words, that is, words in the same cluster. In our case, this was achieved by querying

the clusters table for words sharing the same headword and concisely presenting the

results in a combo box allowing for easy navigation between di�erent members of the

same cluster. The ultimate aim of the dictionary is to reach a high quality standard,

such as the one by Aquilina.

These days, web browser tool bars are becoming widely popular since they provide

a piece of self-contained functionality which is able to o�er certain services to the user

without him or her navigating to the website o�ering the services in question. A very

simple but e�ective dictionary tool bar has been developed, and it can be readily

installed and used from within Internet Explorer, allowing the user to search for

words in an easy manner (Fig. 4.4).

6There exists a basic English-Maltese dictionary on the web, written by Grazio Falzon. However,
apart from using English letters for the special Maltese characters, this dictionary is not searchable.
This dictionary can be found at: http://aboutmalta.com/language/engmal.htm

Chapter 4. Front End Architecture 60

Figure 4.3: Searching the dictionary.

Figure 4.4: The dictionary bar.

Finally, as an open-source development e�ort, a very basic forum was set up so

that possible future amendments, requests, and bug reports are submitted by users

and discussed openly � this will enable the software to evolve in a continuous manner.

Chapter 5

Observations and Results

Having discussed the core operation of the framework and dealt with the clustering

algorithm in Chapter 3, together with the user and programming interfaces in Chapter

4, we now present a series of tests that were carried out on our clustering algorithm,

as well as on the modi�ed algorithm by de Roeck and Al-Fares (2000). In addition

to these tests, we shall also compare some frequency tests run on small corpora with

the ones obtained by Dalli (2002) for the corpus he used1.

5.1 Evaluating the Clustering Algorithm

In this section, we compare the two algorithms mentioned previously, and highlight

their di�erences, strengths and weaknesses with respect to our test set. To be fair, we

also tested the algorithms on an extract from the Maltese bible. A piece of text was

selected speci�cally from the bible since biblical texts tend to contain a good mixture

of Semitic words; this allows us to truly test both the algorithm by de Roeck and Al-

Fares (2000) (which was speci�cally developed for Arabic, although it was modi�ed

as explained in Chapter 3) with our own. Since this biblical text includes weak verbs,

a list of each word with the corresponding root will be provided � this will illustrate

the complexity that both algorithms have to deal with.

The objective of our evaluation is to test that the clustering algorithms produce

clusters with high correctness, while at the same time, producing a number of clusters

which approaches in a satisfactory manner the original number of clusters in the test

1It must be stressed that some spelling mistakes are bound to be found in the texts used for these
tests. No attempt to correct such mistakes were made, since this is actual scenario in which the
algorithms will work.

61

Chapter 5. Observations and Results 62

set. In other words, we are aiming for an output containing a set of clusters which tries

to identify all (or almost all) possible clusters in the original test set without being

too general (placing unrelated words in the same cluster, thus reducing the number

of clusters produced) or too speci�c (placing very closely related word variants in the

same cluster, thus increasing the number of output clusters).

5.1.1 Clustering of Dictionary Text

A set of clusters adapted from the dictionary by Aquilina will be used as a reference

to the tests that will follow. Although the text used here could have been taken from

any other source, and then clustered manually, we chose the dictionary approach

namely because of the great variation of words that can be found, and also, because

clusters are sure to be correct. For our purpose, a cluster is a headword entry together

with its related words. This test (which contains both Romance and Semitic words)

accompanied by the list of a�xes that were used for stemming2 can be found in

Appendix A on page 78.

The Modi�ed Bi-Gram Clustering Algorithm

For the purpose of these tests, we will refer to the algorithm by de Roeck and Al-

Fares (2000) as the bi-gram clustering algorithm. This algorithm, which measures the

similarity between words using bi-grams, uses a threshold parameter α (called the SC

cuto�) which allows words with a similarity higher than α to cluster together. The

following table illustrates the results of these tests with various values for α. Our test

set contained 80 clusters, that is, 1309 words. First, it was seen �t that for these tests,

no weak verbs would be allowed, since the algorithm cannot handle these correctly.

However, later it was decided that the introduction of just two clusters containing

weak verbs will add a little noise to the test set, and therefore, we could see how

both algorithms perform under these conditions, since after all, the setting in which

they will work will certainly contain such verbs. Also, we used the average-linkage

clustering method for both tests.

2We are providing this list since the result of clustering partially depends on this factor.

Chapter 5. Observations and Results 63

Value for α Total clusters Correct Incorrectly Singe-word

clusters clustered words clusters

0.7 624 624 0 330

0.6 424 410 19 173

0.5 268 236 66 92

0.4 146 113 93 27

Value for α Average words/cluster Average wrong words/cluster

0.7 2.098 0

0.6 3.087 0.045

0.5 4.884 0.246

0.4 8.966 0.637

Before discussing the results in the tables provided above, we should state how

a correct multi-word cluster is de�ned. We shall adopt the same de�nition used by

de Roeck and Al-Fares (2000):

�A correct multi-word cluster covers at least two words and is found in the

manual benchmark. It contains all and only those words in the dataset

which share the root.�

As pointed out by de Roeck and Al-Fares (2000), this is a recall-type de�nition,

and it cannot directly measure the quality (precision) of a cluster. Expanding on

this, an incorrectly clustered word is one which does not share the root consonants

or stem in a given cluster. In the tests we have carried out, resultant clusters have

been manually analyzed, and incorrect words were selected in such a manner so that

their number is kept as low as possible. For example, if a cluster is labeled as `intiret'

(inherited), but the rest of the cluster contains `intiret' (the cluster centroid must still

be present as a cluster element), `in
gabret' (she was picked up/she was collected/she

improved herself), and `
gabriet' (collections), then `intiret' is marked as the incorrectly

clustered word. This is because, the cluster headword is chosen by simply �nding a

word in the cluster which is closest the all other words in terms of similarity.

Examining the tables above, it can be seen that when the SC cuto� value α is very

high (0.7), there are no incorrect clusters generated. However, the number of clusters

is overwhelming with an increase of 544 clusters, out of which 75% are single-word

Chapter 5. Observations and Results 64

clusters. Decreasing α to 0.6 does not improve the situtation very much, and still,

a high number of clusters is generated. Even though the number of clusters is high,

we can already see words which are incorrectly clustered � this highlights the fact

the Maltese morphology so intricate that some words are mistaken for others, and

are attracted to a speci�ed cluster centroid before other variants of the centroid in

question.

Setting α to 0.5 and 0.4 respectively reduces the number of clusters created at the

expense of an increase in the number of incorrect clusters. While with α set to 0.5,

incorrect words in clusters mostly amount to one or two, with an SC cuto� value of

0.4 the number of incorrect words in some clusters increased to higher values3.

The Root-Based Clustering Algorithm

By measuring similarity using bi-grams, the bi-gram clustering algorithm is able to

cluster words based on their common set of bi-grams. Although the results gener-

ated by this approach were good, when compared to other known distance/similarity

measurement algorithms, one immediate downside, as seen from the tables above, is

the amount of clusters that is generated. One cannot simply draw a straight line

(or plane) in order to separate a set of words into di�erent partitions; varying α will

either produce a manageable number of clusters and in some way or another cluster

unrelated words into the same cluster (if α is low), or else, produce a high number of

clusters with correctly clustered words (if α is high). Our aim is to try and reduce

the number of clusters, preferably as close as possible to the original number (80),

while at the same time, keeping the number of incorrect clusters to a minimum.

The root-based clustering algorithm (see Section 3.2.1 on page 39) was executed

on the same test set used for the algorithm discussed above. The results of this test

are displayed below:

Value for α Total clusters Correct Incorrectly Singe-word

clusters clustered words clusters

0.0 77 55 70 0

0.1 77 55 70 0

0.2 80 60 63 1

0.3 101 90 35 8

3In one case, 14 words were incorrectly placed in a cluster containing 31 words.

Chapter 5. Observations and Results 65

Value for α Average words/cluster Average wrong words/cluster

0.0 17 0.909

0.1 17 0.909

0.2 16.363 0.788

0.3 12.960 0.347

As can be seen from the results above, our algorithm produces a manageable

number of clusters which however contain few errors. Setting the value of α to 0 will

force the algorithm to use only its initial estimated seed points. Since we have a lot

of variants for the same stem or root, we expect that this algorithm performs better

when compared to the bi-gram clustering algorithm. When slowly increasing α to

0.3, we notice that the number of single-word clusters increases, while the number of

incorrectly clustered words decreases; the price to achieve these values is paid by the

relatively small increase in the number of clusters.

It must be noted that in both algorithms, there will almost always be incorrectly

clustered words. In particular, for our algorithm, even though we �rst �lter words

according to the consonant pattern, we still get incorrectly clustered words. Once

again, this is due to the complex morphology of the Maltese language, where some

words are so `mutated' by the morphological processes that they are unrecognizable

from their root. Due to their stem model, this phenomenon is rather uncommon for

Romance words.

5.1.2 Clustering of Biblical Text

We now test both algorithms on an extract from the Maltese bible. As in the tests

above, for the bi-gram clustering we modi�ed the value of α from 0.7 down to 0.4 in

steps of 0.1 intervals. Note that while the dictionary test contained unique words,

this text is bound to have repetitions. To make the test as fair as possible, proper

names were removed from the extract. The results are tabulated below:

Chapter 5. Observations and Results 66

Value for α Total clusters Correct Incorrectly Singe-word

clusters clustered words clusters

0.7 108 107 1 67

0.6 98 96 3 55

0.5 83 73 14 37

0.4 74 60 20 27

Value for α Average words/cluster Average wrong words/cluster

0.7 2 0.009

0.6 2.204 0.031

0.5 2.602 0.169

0.4 2.919 0.270

At a glance, a lot of incorrectly clustered words, with a high number of clusters

appears, no matter what the value of α is, and to make things worse, the more

α is decreased, the more the number of errors increases. But before drawing any

conclusions, consider the results of the root-based clustering algorithm:

Value for α Total clusters Correct Incorrectly Singe-word

clusters clustered words clusters

0.1 18 1 110 1

0.2 34 11 87 5

0.3 51 29 44 13

0.4 74 60 21 27

Value for α Average words/cluster Average wrong words/cluster

0.1 12 6.111

0.2 6.353 2.559

0.3 4.235 0.863

0.4 2.919 0.284

The result which immediately draws our attention is the one in which α = 0.4

for the bi-gram clustering algorithm, and α = 0.4 for the root-based clustering algo-

rithm, where the results are virtually identical. This is one feature of the root-based

Chapter 5. Observations and Results 67

clustering algorithm, where in its worst case it virtually behaves like the bi-gram clus-

tering algorithm. This was possible by the introduction of the α parameter, which

allows the root-based clustering algorithm to be able to generate single-word clusters

when not enough evidence of similarity is available. Like in the bi-gram clustering

algorithm, the SC cuto� allows single word clusters not to be combined with others,

if their similarity is not greater than or equal to α. If α was not introduced, the

modi�ed k-means algorithm used to perform the �nal clustering (step 3) would have

been forced to place all single-word clusters into any cluster, according to their sim-

ilarity. Therefore, if there exists no similarity between two given clusters, these will

still have to be clustered together, since the logic of the standard k-means algorithm

is to place all input objects into the speci�ed seed points. Loosening this restriction

by introducing α allowed the algorithm to cope with single-word clusters.

Now, if we consider the results displayed in the tables above, one may conclude that

both algorithms performed badly when compared to the clustering of the dictionary

text. However this is not precisely the case, namely because:

Unrelated words Usually, clustering is successful when it is applied on a set con-

taining items related in some manner, even though these relations are not always

obvious. In the case of this particular bible extract, words were very unrelated,

and therefore, the creation of single-word clusters was inevitable.

Lots of articles While in the dictionary text there was no presence of articles, in

this text (and in the majority of other texts in Maltese), the presence of articles

is very prevalent. Apart from this, the basic form of the article varies according

to the �rst consonant of the word following the article4. In this test, most of

the time, articles (i.e. words ending in `-') were clustered together.

Missing a�xes The a�x list used in the clustering test performed over the dictio-

nary text is of course not exhaustive, and it was speci�cally built just for the

dictionary test. Therefore, some a�xes may be missing, leading to a possible

incorrect clustering of certain words. Although this e�ect is minimal, it should

4E.g. il- qamar (the moon), ix- xemx (the sun), i
z-
ziemel (the horse). As opposed to English, the
article varies according to the word following it, while in the case of English, the same article `the'
is used; in German, only three articles are used, namely `der' (for masculine), `die' (for feminine)
and `das' (for neuter). To complicate things further, when the word following an article denotes
something which is countable and singular, the hyphen precedes the article, as shown: kemm -il
darba (on a regular basis/often), §dax -il plejer (eleven players). See Appendix B on page 87 for
more details on the article.

Chapter 5. Observations and Results 68

be made explicit that ultimately, the presence/absence of a�xes will in some

way a�ect the results of the clustering operation.

Weak verbs It was already made clear that weak verbs will confuse the clustering

algorithm since at times root consonants are visible in some verb form, and

hidden in others. Consequently, we do not expect that these are correctly clus-

tered, unless weak verbs are identi�ed beforehand. Needless to say, weak verbs

are very common in the Maltese language and are widely found in virtually any

Maltese text. The table below illustrates all the verbs in the extract taken from

the bible, where these are accompanied by their root if appropriate.

Word Stem/Root Word Stem/Root Word Stem/Root

f � inkun
√
KWN tag§arfuh

√
G§RF

dak � jien � rajtuh
√
R(')J

i
z- � tkunu
√
KWN urina

√
WRJ

zmien
√

ZMN intom � jkun
√
KWN

qal
√
QWL ukoll � bi
z
zejjed

√

ZJD

lid- � t- � g§alina
√
G§LJ

dixxipli dixxipl triq
√
TRQ ili �

tieg§u
√
TG§ g§all-

√
G§LJ daqshekk

√
DQS

t§allux
√
�LJ tafuha

√
G§RF mag§kom

√
MG§

qalbkom
√
QLB qallu

√
QWL int �

tit§awwad
√
�WD a§na � g§adek

√
G§WD

emmnu
√
WMN nafux � g§araftnix

√
G§RF

alla � inti - ra
√
R(')J

u � kif
√
KJF lill- �

�ja � nistg§u
√
STG§ tasal

√
WSL

wkoll � nafu � tg§id
√
G§JD

�d- � wie
gbu
√
W
GB temminx

√
WMN

dar
√
DJR jiena � �l- �

ta
√
G§TJ hu � kliem

√
KLM

missieri missier is- � ng§idux
√
G§JD

hemm
√
HMM sewwa

√
SWJ rajja

√
R(')J

Chapter 5. Observations and Results 69

Word Stem/Root Word Stem/Root Word Stem/Root

§afna
√
�FN l- � i
zda �

g§amajjar
√
G§MR §ajja

√
�JJ jg§ammar

√
G§MR

li � §add
√
W�D qieg§ed

√
QG§D

ma
√
MJ jmur

√
MWR iwettaq

√
WTQ

kienx
√
KWN g§and

√
G§ND g§emil

√
G§ML

hekk
√
HKK il- � emmnuni

√
WMN

kont
√
KWN missier missier g§al �

ng§idilkom
√
G§JD jekk � §a
ga

√
�W
G

sejjer
√
SJR mhux � o§ra �

in§ejjilkom
√
�JJ bija � emmnuh

√
WMN

fejn � kieku � min§abba �

toqog§du
√
QG§D g§araftu

√
G§RF �- �

meta
√
MTJ lili � stess �

mmur
√
MWR kontu

√
KWN �s- �

n§ejjilkom
√
�JJ tag§arfu

√
G§RF jemmen

√
WMN

post post il � g§ad
√
G§JD

ner
ga
√
R
GG§ minn � jag§mel �

ni
gi
√

GJJ min � nag§mel
√
G§ML

biex � issa � akbar
√
KBR

ne§odkom
√
(')�D l � minnu �

mieg§i � quddiem
√
QDM g§ax

√
G§X

The strength of the root-based clustering algorithm is therefore shown when a lot

of variants of the same stem/root are present in the set of words to be clustered, and

it is hoped that if a large corpus is used, the results of the clustering operation are

quite satisfactory. Yet, the clustering of small �les containing a couple of hundred

words (the bible extract contained 216 words) must not be taken lightly, and suitable

measures were taken so that when the data to be clustered is sparse (in the sense

of a high number of unrelated stems/roots), at least average results are produced.

This was done by the introduction of the α parameter which allows the algorithm to

behave like the bi-gram clustering algorithm, should the situation arise.

Chapter 5. Observations and Results 70

5.1.3 Word Statistics

In this subsection, we use our statistics tool to try and obtain frequencies of Maltese

words and compare them to the results obtained by Dalli (2002). The following table

shows the word frequencies for a very small corpus (10,276 words) taken from various

Maltese websites. The topmost twelve ranking words are displayed here.

Rank Word Frequency Rank Word Frequency

1 l- 5,986 7 mill- 824

2 ta' 3,901 8 �l- 817

3 li 3,578 9 �- 693

4 u 3,005 10 dan 657

5 il- 2,831 11 f' 608

6 tal- 2,134 12 g§all 591

The fact that the topmost ranks are occupied by the articles immediately suggests

that these are the most common words, at least in our corpus. As already noted,

articles are usually variants of the same basic article, which however changes according

to the word following it. The next test is performed on a bible-related text of 38,729

words.

Rank Word Frequency Rank Word Frequency

1 li 45,705 7 alla 12,795

2 l- 43,079 8 tal- 11,755

3 u 38,392 9 f 10,274

4 ta 31,539 10 dan 9,223

5 il- 28,264 11 hu 8,834

6 ma 17,303 12 kristu 7,298

Again, the articles occupy some of the higher ranks, although in this test, we have

an increase in words which are not classi�ed as articles. Particularly note the words

`alla' (god), and `kristu' (christ) which have displaced the higher raking words seen

in the �rst test into a lower level. By measuring the frequency of certain words in

corpora, we may get a very rough indicator as to which kinds of texts were used to

build the corpus. WordSmith tools uses a similar approach to �nd possible keywords

Chapter 5. Observations and Results 71

(those words which have a relatively higher occurrence count with respect to other

words) in texts.

The table of frequencies given below was taken from Dalli (2002, pg. 185). As it

can be noted, even though the corpus he used amounted to about 2.39 million words,

very similar frequencies were obtained, and in some cases, words even kept their rank

intact. This may hint that the typicality of certain Maltese words (such as articles for

example) can be determined from even relatively small collections of text. Needless

to say, the more words present, the more accurate our frequency distribution will be,

but in cases were rough estimates are needed, small corpora can suggest fairly good

�gures.

Rank Word Frequency Rank Word Frequency

1 li 90,166 7 kien 13,811

2 l- 84,344 8 biex 13,431

3 il- 53,834 9 �- 11,218

4 �l- 18,727 10 dan 11,000

5 f' 17,958 11 b' 10,402

6 ma 16,098 12 g§al 9,583

Results

For the dictionary test, the root-based clustering algorithm outperformed the bi-gram

clustering algorithm since the former approached the original number of clusters while

at the same time maintained a higher cluster correctness than the latter algorithm.

When both algorithms were presented with a random test set (the bible text) which

contained a high amount of unrelated words together with a large number of irregular

and weak verbs, both algorithms produced virtually identical results, indicating that

the root-based clustering algorithm will at worst produce average results. It must be

noted that irregular and weak verbs are very hard to cluster since usually their root

changes between one verb form and the next. Knowledge-based techniques can be

used to deal with such verbs.

Chapter 6

Further Work and Conclusions

This report detailed the work done on the thesis, and presented its main points. Its

aim was to design and implement a �rst cooperative framework for linguists, which

enables them to build a computational lexicon for Maltese. One such product of this

computational lexicon is an online dictionary, providing users with searching facilities,

aiming to reach high quality work such as the dictionary by Joseph Aquilina.

One way to achieve this is to decentralize the process of dictionary development.

Like open source software products, where these are developed by a number of people

across the globe, so can an `open source' dictionary be developed, by not only involving

linguists and academic sta�, but also common people. However, control is provided to

specialized people, and therefore, the �nal decision of admitting a word or de�nition

into the database is theirs.

Apart from building a huge word list with no structure at all, a second aim of

the project was to provide the lexicon database with structure, similar to that found

in dictionaries. Using well known clustering techniques, as well as our cooperative

framework of building clusters, semi-automated clustering of words directly from text

�les was provided. The clustering algorithm performs best when a su�ciently large

text �le is provided, as well as when di�erent forms of the same stem/root are found.

In the case where the data is sparse, the algorithm is still able to cope in a satisfactory

manner, achieving results similar to those by de Roeck and Al-Fares (2000). Clus-

ters generated by this algorithm can then be submitted to the lexicon database for

reviewing. The advantage of an open source approach to dictionary/lexicon building

is that users can review and also edit each other's work. Thus for example, a given

cluster can be built by the aid of the clustering algorithm, as well as a number of

72

Chapter 6. Further Work and Conclusions 73

users, each editing di�erent entries in the same cluster. Although this can be done

in another system we have discussed (Dalli, 2002), it is rather cumbersome, since it

does not provide this distributed facility present in our system. On the other hand,

one downside of the distributed approach is that words are not automatically clus-

tered and added to the lexicon database, although the latter matter discussed in Dalli

(2002) still involves a post editing phase.

This distributed framework is supported mainly by the design of the database

as well as the software used to connect to it. Before the project started, it was

explicitly stated that the implementation of the lexicon server would in some manner

provide an extensible approach, in that once the system is designed, it would be able to

accept extensions readily. This was realized thanks to the idea of plug-ins, where each

component, including the database access classes, hook up into the client application

and operate seamlessly without too much complication. This required one common

bare bones client capable of accepting both standard user and administrator plug-ins.

The former plug-ins together with the common client application are provided for

download, while the administrator are kept private. To further provide interaction

between users of the system, each standard client application contains an inbuilt

rudimentary chat tool.

To augment the rest of the system providing the users with an automated regis-

tration facility, and a place where tools and updates can be posted and downloaded, a

project website was set up. Apart from providing a registration service, the site also

allows the users to unregister, as well as edit their details. The online Maltese dictio-

nary can also be accessed and searched from here, and each entry in the dictionary is

linked to similar words thanks to the cluster structures.

A set of tools for manipulating words directly from text �les has also been provided.

In short, these tools allow the user to cluster words and align individual words either

by aligning whole �les or by manually supplying the words to be aligned. Distance

between words can be found in a similar manner. Statistics about words can be found

by examining �les for word frequencies and percentages. Although this feature is able

to deal with only one �le, in the future we will hope to extend this facility to cater

for number of text �les. A basic word list building tool, able to merge multiple �les

in one, and applying any rewrite rules supplied by the user, was also provided.

Chapter 6. Further Work and Conclusions 74

6.1 Further Work

Whereas the aims of the original system have been ful�lled, this project is still in its

infancy, and much work can be done to improve and expand it. In this section, we

will brie�y outline possible upgrades that can be implemented to greatly improve the

system, both for the users building the lexicon/dictionary, as well as the `external'

users making use of the system. These updates are categorized and discussed below.

Clustering

Clustering was moved out of the central server onto the client machines, in an intent

to relieve the server machine of the precious processing power, which can be used

elsewhere. The additional advantages of this approach is that clusters can be created

on client machines, and then submitted later to the server, where these are reviewed

by appropriate sta�, and either accepted or rejected. A downside with this approach

is however that a word is not clustered as soon as it enters the database, but has to

be considered for clustering by the users building the lexicon.

If the clustering algorithm is further perfected, one might consider the fact of

incorporating it also on the server side, since now clustering would be more reliable.

There are several possible updates which can be done, but at the time of writing,

two reasonable updates are envisaged, and these stem out from the problems faced

by the clustering algorithm, discussed in Subsection 3.2.1 on page 39. The problem of

con�icting consonants could partially be solved if the clustering algorithm was able

to access foreign dictionaries like Italian, English and French, so that it would be

able to somehow make and informed decision on whether a word is of Romance or

Semitic origin. By using suitable weights, the algorithm would possibly be able to

determine whether wrong clusters have been formed, in that Semitic and Romance

words with overlapping consonants are grouped together. In addition to this, if the

dictionaries are of very high quality, and include the stems of particular words, words

can be processed prior to the actual clustering algorithm, where the output of this

preprocessing phase would be two clusters, one containing Romance words, and the

other Semitic words. Then, specialized algorithms, which exploit the characteristics

of both languages could be used. For example, the root-based clustering algorithm

could be used to cluster words in the Semitic cluster, and simple Levenshtein distance

Chapter 6. Further Work and Conclusions 75

with a�x stripping could be used for the second cluster1.

The second update, which is oriented towards the Semitic part of the language

involves using an appropriately constructed electronic dictionary which the algorithm

would use to detect irregular/weak verbs.

Other updates that can be suggested include using consonant templates (CV pat-

terns) to try to `reverse engineer' (Semitic) words, and obtain their base form, which

could then be compared to determine the correct cluster. This method, although using

already speci�ed (manually built) templates, brings along a number of complications;

these are discussed in Rosner et al. (2000). Note that all these updates discussed in

this section are in a way not related to our original aim, since the clustering algorithm

adopts a knowledge-free approach to clustering. Yet these updates could improve our

method drastically.

Framework, Tools and Website

Because of the �nite amount of time, certain issues and design decisions regarding

the development of the system as a whole, particularly, the framework, were of higher

priority than others. Thus, it was made sure that �rst, the basic requirements of the

system were reached, and then, if there was additional time left, other less important

issues would be tackled. Unfortunately, no time was left, and therefore, we will suggest

additional updates regarding the general framework here.

One small inconvenience that could be caused is the fact that when posted user

amendments are either accepted or rejected, there is no way in which they can `know'

this. The original idea was to allow the system to send automatically generated e-

mail, explaining whether their contribution was considered or not. In fact, the user

name was speci�cally selected to be an e-mail address, so that should the need for its

use arise, no changes to the users table are needed. As already discussed in Section

4.2, the code for generating and sending e-mail is already present, and therefore, this

minor change to the framework will greatly improve the user experience.

The text processing tools are very basic for the moment, and these were introduced

just to provide the users with the ability of processing raw text �les. Additional com-

ponents that could be provided include implementations of local and global multiple

alignment algorithms, as well as extending the statistics tool to support multiple �les.

1The root-based algorithm could be used on both clusters, since it is able to cluster Romance and
Semitic words correctly. However, the initial preprocessing phase would mean that the root-based
algorithm will not confuse stems/roots sharing the same consonants.

Chapter 6. Further Work and Conclusions 76

Additional components that would greatly improve our repertoire of user tools

include verb analysis algorithms, able of analyzing the morphology of Semitic verbs

(perhaps using grammar rules). Another morphology-related tool would be a fully

featured morphology analysis program similar to Goldsmith's Linguistica2. Since

tools like this are only able to analyze Indo-European languages, such a tool must be

augmented with the facilities able to also analyze in�xes which are present in Semitic

languages.

One tangible output of the project, apart from the framework and lexicon itself,

is the creation of the �rst searchable Maltese-English dictionary. The original intent

was to try and produce a basic dictionary structure which would however resemble

Aquilina's dictionary, in both quality and structure. Of course, we are a long way

o�, but by the use of our cooperative framework, an evolving dictionary can be built

in hopefully lesser time than it would take a single person to complete. Maltese

dictionaries are very lacking, especially for the fact that �rst, the Maltese language is

not promoted enough, and secondly, because some of them (for example Aquilina's)

cost a fortune. Of course, we are not suggesting that these printed dictionaries should

be free of charge. Instead, we are aiming to create a dictionary which apart from being

accessible to everyone for free, is more �exible in terms of searching and multimedia

support, not only for Maltese people, but also for foreigners, since the promotion of

the language also involves the construction and maintenance of a good and reliable

dictionary re�ecting the current state of the language.

Several projects, such as the EDICT project (Breen, 1999) provides dictionaries

which are created in a distributed manner, and made freely available to everyone.

Such projects also produce dictionary releases which can be downloaded by software

companies, and used to provide more suitable interfaces with additional facilities not

present on-line. In our case, an appropriate format must be devised, so that we are

able to provide free dictionary releases � in turn these can boost other projects in need

of suitable electronic dictionaries3. For such purposes, XML can be used to provide a

suitable format, since this is readily accessible and supported by most programming

languages such as C# and Java. Coupled with this dictionary, an on-line (at least for

now) spell checker can also be made available4.

2Linguistica is the implementation of the algorithm discussed by Goldsmith in Subsection 2.2.2
on page 16.

3A tool for dumping the contents of the dictionary into either XML or text �les has been devel-
oped.

4An excellent Maltese spell checker project for Linux already exists at:

Chapter 6. Further Work and Conclusions 77

The website provides basic functionality related to the use of the system, namely,

the dictionary, provision of the applications and the user registration process. It

would be very useful to include a common language phrase book, such as those found

in many sites, aiming to familiarize tourists with the language of the country and

common spoken phrases. Of much importance is also the compilation of appropriate

help �les needed to support the distributed software (refer to Appendix C on page 94

for basic instructions on using the software).

6.2 Conclusion

This project presented a general and extensible framework for the building and main-

tenance of a computational lexicon for the Maltese language. It also provided the

necessary tools for the �rst distributed construction of both a comprehensive word

list, as well as a high quality Maltese dictionary, publicly accessible and freely avail-

able. An extensive examination of how structure could be provided to the dictionary

was made, and various ideas from articles were used to come up with a suitable

clustering algorithm able to cluster Maltese words according to their stem or root.

The framework also provides the necessary APIs that can be used by programmers

to invoke the lexicon services. Such a system with suitable provision of programmatic

access is a very basic and important building block in natural language systems, such

as automatic translation and language understanding. Being the �rst of its kind, this

project had to make use of knowledge-free approaches, since no electronic dictionaries,

lexicons or thesauri exists for Maltese. It is hoped that in the future, Maltese-related

NLP systems can be developed in a relatively easier manner, since now at least the

creation of one fundamental missing component has been tackled. Finally, it is also

hoped that by the creation of an evolving dictionary, the Maltese language is kept

alive as it has been by others in the past.

http://linux.org.mt/article/spellcheck.

Appendix A

Test Set

This appendix includes the cluster test set that was used in Chapter 5, to test both

the bi-gram and the root-based clustering algorithms. This set was extracted from the

Maltese-English dictionary by Aquilina (1987-1990), and was used as a reference to

measure the performance of both clustering algorithms. Since both algorithms rely on

a set of a�xes that is used in the stemming process, this set of a�xes is also provided

in this appendix.

A.1 Clusters

xebah (
√
XBH) xebh, xebha, xbieha, xbiha, xebbah, xebbeh, xebbieh, tixbih, xieb-

ah, mxiebha, ixxebbah, ixxebbeh, ixxiebeh, xtiebah, mxebbah.

sawwat (
√
SWT) msawwat, isawwathom, isawwat, imsawwat, isawwatni, sawwata,

sawwatin, sawwati, sawt, swat, sawta, sawtiet, tiswit, issawwat.

rabat (
√
RBT) marbut, torbot, torbotx, orbtu, jorbotni, jorbothom, jorbtux, ir-

batt, rbattx, rabtuh, rabtet, marbuta, rbata, rbita, rbajjet, rbit, rabta, rabbat,

trabbat, rabbata, tarbit, trabbit, trabbita, ntrabat, rtabat, jirtabat.

radam (
√
RDM) radam, mirdum, mardum, mordum, radmu, jordom, irdamtu,

nordmok, rdum, rdumi, rdumija, rdumin, rdajjem, radma, ntradam, rtadam.

pe
cpe
c (
√
P
CP
C) mpe
cpe
c, jpe
cp
cu, tpe
cpe
c, impe
cp
cin, pe
cpie
ci, pe
cpie
c, pe
cpu-

ca, pe
cpu
c, pe
cpie
cija, nitpe
cpe
c, titpe
cpe
c, tpe
cpi
c, tpe
cpi
ca.

opinjoni (opin) opinjonijiet, opinabbli.

78

Appendix A. Test Set 79

oppo
zizzjoni (oppo) opponent, oppositur, oppositura, opposituri, oppona, joppo-

ni, topponihx.

g§erq (
√
G§RQ) g§eruq, g§arraq, mg§arraq, g§erejjaq, g§erejjeq.

g§allaq (
√
G§LQ) g§alaq, ig§allqu, mg§allaq, g§allaqtni, g§allieq, g§allieqa, g§al-

lieqin, g§alliqija, g§olliqa, g§ollieqa, g§olliq, tag§liq, tg§liqa, tg§allaq, tg§allieq.

nota (not) noti, noterell, noterella, notabbli, notazzjoni, annotazzjoni, notazzjoni-

jiet, annotazzjonijiet, notament, notamenti, notevoli, noti�kazzjoni, noti�kaz-

zjonijiet, innota, innotat, tinnota, jinnota, noti�ka, noti�ki, innoti�ka, innoti-

�kat, noti�kat, innoti�kar, noti�kar.

nom (nom) nomi, nominali, nominalistiku, nominalistika, nominalisti
ci, nominali-

zmu, nominali
zmi, nominalment, nominattiv, nominattiva, nominattivi, nomi-

nazzjoni, nominazzjonijiet, nomna, nomina, nomni, nomini, innominabbli, in-

nomina, innomna, innominat, innominar, innomnat, innomnar.

norma (norm) normi, normal, normali, anormali, normalment, normalit�a, anorma-

lit�a, normalizzazzjoni, normalizzazzjonijiet, innormalizza, innormalizzat, nor-

malizzat, normalizzar, innormalizzar.

ni
zel (
√
N
ZL) in
zel, nie
zel, min
zul, n
zilt, jin
zel, ni
zelhom, ni
zlux, tin
zillix, jin
zill-

ix, jin
zlu, nie
zel, nie
zla, ni
zla, n
zieli, n
zuli, ni
zli, n
zulija, ni
zlija, ni
zlin, ni
z-

zel, mni
z
zel, ni
z
zluh, inni
z
zlu, ini
z
zel, ini
z
zillek, jni
z
zel, ni
z
ziel, ni
z
ziela, ni
z
zie-

li, ni
z
zielin, ni
z
zelija, tin
zil, tin
zila, tni
z
zel, tni
z
zil, tni
z
zila, min
zel, mnej
zla,

min
zla, n
zul.

nibet (
√
NBT) minbut, jinbet, nibtulha, inbitt, niebet, niebta, nibtin, nbit, nibta,

nibtiet, nbieta, nbiet, nbieti, nbietija, nibbet, nebbet, mnibbet, mnebbet, i-

nibbet, inebbet, nebbiet, nibbiet, nibbieti, nebbieta, nibbieta, nebbieti, tinbit,

tinbita, tnebbet, tnibbit, tnibbita.

modern (modern) mudern, moderna, moderni, modernament, modernista, mod-

ernisti, modernit�a, moderni
zmu, modernizzatur, modernizzatura, modernizz-

aturi, modernizzazzjoni, modernizzazzjonijiet, immodernizza, immoderna, mod-

ernizzat, modernizzar, immodernizzat.

Appendix A. Test Set 80

mi
zerja (mi
zer) mi
zerji, mi
zeru, mi
zera, mi
zeri, mi
zerabbli, mi
zarabilment, mi
zer-

jament.

nies (�) stienes.

miraklu (mirak) mirakli, mirakolu
z, mirakulu
z, mirakolo
zament, mirakulat.

mesa§ (
√
MS�) mimsu§, imsa§, nimsa§, timsa§, mes§et, mes§itu, msi§, mes§a,

mes§iet, msie§, mas§a, mas§iet, messa§, messie§, timsi§, tmessa§, timsi§a,

ntmessa§.

mertu (mert) meritu, merti, meriti, meritevoli, meritevolment, meritokrazija, me-

ritokratiku, immerita, demertu, demerti.

meraq (
√
MRQ) merqtu, merq, merqiet, merraq, mmerraq, mmerrqa, merrieqi,

merriqija, merriqin, tmerraq, tmerriq, tmerriqa.

maxat (
√
MXT) mimxut, maxatlu, moxt, moxtijiet, mxat, maxxita, mxit, mxa-

ta, maxxat, immaxxat, timxit, timxita, tmaxxat, tmaxxit, tmaxxita, ntmaxat,

mtaxat, maxta.

marad (
√
MRD) nimrad, mard, marid, marida, morda, marrad, mmarrad, tmar-

rad, imarradni, marrada, marradin, marradi, mrajjed, marradija, tmarrid, mar-

det.

zg§ir (
√

ZG§R)
zg§ira,
zg§ar.

zifen (
√

ZFN) mi
zfun,
zifna, ji
zfen, ni
zfen,
z�n,
zifniet, ni
zfnu,
zfejna,
ze�en, i
ze�n-

hom, i
ze�en, i
ze�nni, im
ze�en,
ze�en,
ze�ena,
ze�eni,
ze�enija,
ze�enin,

ti
z�n, ti
z�na, i
z
ze�en, ji
z
ze�nu.

xewwex (
√
XWX) mxewwex, ixewwex, xewwiex, xewwiexa, xewwiexin, xewwiexi,

xewwiexija, tixwix, tixwixa, ixxewwex, txewwex.

xabbat (
√
XBT) mxabbat, xabbata, xabbatin, xabbati, xabbatija, xabbatur, xab-

batura, xabbaturi, tixbit, tixbita, ixxabbat, ixxabtu.

wiret (
√
WRT) jiret, mirut, wiritha, wirt, wirta, werret, mwerret, werriet, werrieta,

werrietin, werrieti, werrietija, jitwerrtu, twerrit, twerrita, ntiret.

Appendix A. Test Set 81

wikka (
√
WKJ) wekka, mwikki, twikki, wikkielek, wekkej, wekkejja, wekkejjin,

tiwkkijja, twekka, twekkija.

wie§ed (
√
W�D) wa§da, wa§diet, u§ud, w§ud, wa§di, wa§du, wa§dek, wa§edha,

wa§idhom, wa§dien, wa§dieni, wa§denija, wa§denin, wa§§ad, mwa§§ad, te§-

wid, tew§idha.

wer
zaq (

√
W
ZRQ) mwer
zaq, twer
zaq, twer
ziq, iwer
zaq, wer
zieq, wir
zieq, urie
zaq,

wrie
zaq, wer
zieqi, wer
zieqija, wer
zieqin, wrej
zaq, wer
ziqa.

alterazzjoni (alter) alterazzjonijiet, alterabbli, inalterabbli, alterat, altera, alterar,

taltera.

antik (antik) antika, antiki, antikalja, antikament, antikit�a, antikwarju, antikwarji,

antikwarjat, antikwata, antikwati, antikwalja.

awtorit�a (awtor) awtoritajiet, awtoritevoli, awtorevolment, awtoritarju, awtoritar-

ja, awtoritarji, awtorizzazzjoni, awtorizzazzjonijiet, awtorizza.

bakar (
√
BKR) mibkur, jobkor, bkur, bkura, bkuri, bkurija, bkurin, bkir, bkieri,

bikri, bikrija, bikrin, bokra, bakkar, mbakkar, bakkari, bakkara, bakkarin, bak-

karija, tibkir, tibkira, tbakkir.

bambal (
√
BMBL) bambalulu, bambalielhom, bambalulhek, tbambila, ibambal,

tbambil.

baram (
√
BRM) mibrum, mibruma, jobrom, jobormok, jobromlu, brim, barma,

barram, ibarram, barrama, barramin, tbarram, tbarrim, tbarrima, nbaram,

btaram, mbaram.

xedaq (
√
XDQ) ixdqa, xdieq, xedqajn, xedqejn, xdiq, xdiqi, xedqu, xdejjaq.

webbel (
√
WBL) mwebbel, webbiltni, webbilni, webbiel, webbiela, webbeielin,

twibbel, jitwebblu, twebbilt, twebbil.

warrab (
√
WRB) mwarrab, imwarrab, iwarrabna, warraba, warrabija, warrabin,

twarrib, twarriba, twarrab.

waqaf (
√
WQF) jieqaf, ieqaf, tieqaf, waqqfet, iqa�u, waqa�u, wieqaf, wieqfa, wiq�n,

waqfa, waq�en, wqif, waqqaf, waqqafni, jwaqqaf, waqqaftu, twaqqaf, twaqqif.

Appendix A. Test Set 82

textex (
√
TXTX) mtextex, mtextxa, textiexi, textiexija, textiexin, textix, textixa,

textuxa, textuxiet.

taqab (
√
TQB) mitqub, tqib, toqba, toqbiet, tqajba, tqajbiet, toqbi, taqqab, m-

taqqab, taqqabtli, taqqaba, titqib, ittaqqab, ntaqab.

varjet�a (varj) varjetajiet, varju, varja, varjabbli, invarjabbli, varjabilit�a, varjanti,

varjazzjoni, varjazzjonijiet, varjar, varjat, ivarja, tvarja.

se§er (
√
S�R) s§arijiet, is§ra, sa§§ar, msa§§ar, ssa§§ritu, sa§§ara, s§a§ar, tis§ir,

tis§ira, issa§§ar, nse§er.

qarad (
√
QRD) maqrud, oqrodha, qrid, qard, qarda, qardiet, qarrad, mqarrad, qar-

ried, qarrieda, qarriedin, qarredija, qordiena, qardiena, qurdiena, taqrid, tqrida,

nqarrad, nqorod.

qatel (
√
QTL) maqtul, toqtol, toqtolni, noqtolok, joqtol, toqtlu, qatlu, joqtolhom,

joqtolni, joqtlok, qatlitu, toqtlok, oqtolni, oqtlu, qatilha, qtil, qatla, qatlet,

qattel, mqattel, qattiel, qattiela, qattielin, qattieli, qattielija, taqtil, taqtila,

tqattel, taqttil, tqattila, tqatel, tqatil, nqatel, jinqatlu.

lewn (
√
LWN) lwien, lewnijiet, lewwen, mlewwen, tilwin, tilwina, tlewwin, tlewwen.

lag§ab (
√
LG§B) milg§ub, jilg§abu, jilg§ab, nilg§ab, jilg§abhom, tilg§ab, tilg§ab-

li, lag§buh, lag§ablu, lag§abhomlu, jilg§abha, lag§abtlu, tilag§abha, lag§ba,

log§biet, lg§ajba, lg§ajbiet, log§ob, log§obok, lag§bi, lag§bija, milg§aba, mil-

g§abiet, tlieg§eb, ntlag§ab, milg§ab.

la§la§ (
√
L�L�) mla§la§, ila§la§, imla§la§, imla§al§a, la§lie§, la§lie§a, la§lie§in,

la§lie§i, tla§la§, nitla§al§u, jitla§la§, la§li§, tla§li§, la§li§a, tla§li§a.

kon
cett (kon
ce) kon
cetti, kon
cettiv, kon
cetta, kon
cettwali, kon
cettwali
zmu, kon-

cettwalista, kon
cettwalisti, kon
cepibbli, inkon
cepibbli, ikkon
cepxxa.

keskes (
√
KSKS) mkeskes, ikeskes, imkeskes, kiskes, keskiesa, keskisiet, keskies,

keskiesin, keskiesi, tkeskes, jitkesksu, tkeskis, tkeskisa.

insinwa (insinw) insinwi, insinwat, insinwar, jinsinwa, insinwazzjoni, insinwazzjoni-

jiet.

Appendix A. Test Set 83

§olom (
√
�LM) mo§lum, n§olom, §lomt, jo§lom, to§lom, §lomtha, jo§lomha,

§olm, §olma, §allem, m§allem, §allemni, §ellemha, t§allmu, ta§lim, ta§lima,

§elliem, §elliema, §alliemin, §elliemi, §alliemija, §elliemin, t§allem, t§allim,

t§allima, no§lom.

§adem (
√
�DM) ma§dum, n§adem, ja§dem, t§adem, ta§dima, t§admu, ja§dmek,

ja§dmini, ta§dmu, §adimlek, §idma, §dim, §adma, §addem, §addimtu, in§ad-

dmek, §addmu, i§addmu, §addimhom, §addimtha, §addiem, §addiema, §ad-

diemi, §addiemin, ta§dim, t§addem, t§addim, t§addima, na§dem.

heme
z (
√
HM
Z) mhemu
z, mhemu
zin, ahme
z, hmi
z, hem
za, hemme
z, hemmie
z,

hemme
za, hemme
zin, hemme
zija, hemmeie
zi, themme
z, themi
z, mahmie
z.

g
zira (g
zr) g
ziriet, g
zejjer, g
zejra, g
zejri, g
zejriet, g
zejrija, g
zejrin.

gerfex (
√
GRFX) mgerfex, gerfexhomli, imgerfex, nitgerfex, tgerfex, jgerfxu, ger-

�ex, ger�exa, ger�exin, ger�exi, gerfux, gerfuxa, gerfuxiet, gri�ex, ger�x, ger�xa,

tger�x, tger�xa.

gdid (�)
gdida,
gedded, m
geded,
geddulu,
geddu,
geddied,
geddieda,
geddiedin,

geddiedi, ti
gdid, ti
gdida, i
g
gedded.

gabar (
√

GBR) mi
gbur, i
gbor,
gabru, ti
gborhiex, ti
gbrux, mi
gburin, ji
gborhuli,

ji
gbrilha, ni
gbor,
gabruh,
gbarthom,
gabarhom,
gbir,
gabra,
gabriet,
gbira,

gabbar, m
gabbar,
gabbara,
gabbarin,
gabbarija,
gabbari, ti
gbir, ti
gbira, i
g
gab-

bar, n
gabar, tin
gabar, in
gabret,
gabrithu, jin
gabar, ma
gbar, mi
gbra.

fetaq (
√
FTQ) miftuq, fetqet, joftoq, fetqitu, ftuq, fetqa, ftejqa, fettaq, nfettqu,

fettieq, fettieqa, fettieqin, fettieqi, fettuqa, ftietaq, tiftiq, tiftiqa, tfettiq, nfetaq.

furketta (furkett) frieket, furkettata, furkettati, furkettun, furkettuni, i�urkettja,

i�urkettjat, i�urkettar, �urkettat.

fela§ (
√
FL�) mi�u§, ji�a§, ni�a§, ji�a§x, ti�a§, �a§na, ni�a§x, ji�l§ux, fel§, fel§i,

fel§a, fel§in, fellie§, fellie§a, fellie§in, fel§an, fel§ana, fel§anin, nfela§.

fadal (
√
FDL) fadallek, fadalx, fdal, fdalijiet, fadla, fdala, faddal, mfaddal, tfaddal,

faddala, faddalin, faddalija, tifdil, tifdila, tfaddil.

Appendix A. Test Set 84

fehem (
√
FHM) mifhum, tifhem, fhimtni, jifhimx, nifhem, jifhem, jifhmu, fehim,

fehma, fehmiet, �ehem, m�ehem, fehiem, fehiema, fehiemi, t�ehem, tfehim,

tfehima, nfehem, nftehem, ftiehem, nftiehem, ftehim, ftehima.

e
zer
zizzju (e
zer
c) e
zer
cizzji, e
zer
centi, e
zer
cita, e
zer
citat, e
zer
citar, je
zer
cita.

evolut (evol) evoluta, evoluti, evolva, evoluttiv, evoluzzjoni, evoluzzjonijiet, evoluz-

zjonista, evoluzzjonisti, evoluzzjoni
zmu, evolventi, evolvi.

dendel (
√
DNDL) mdendel, imdendel, dendluh, dendil, dendila, dendiel, dendiela,

dendielin, dendul, dendula, denduliet, denduli, iddendel, ddendelna, iddendlet.

de
ci
zjoni (de
ci
z) de
ci
zjonijiet, inde
ci
zjoni, de
ci
z, de
ci
za, de
ci
zi, inde
ci
zi, inde
ci
za,

de
ci
ziv, de
ci
ziva, de
ci
zivi, de
ci
zur, de
ci
zuri, de
ci
zament, idde
cieda.

daqq (
√
DQQ) idoqq, jdoqq, ndoqqu, doqqli, ddoqqx, jdoqqlix, iddoqqlu, ddoq-

qhomlu, doqqhomli, daqqu, daqqlu, daqqiet, daqqa, dqajqa, daqqaq, iddoqq,

daqqaqa, daqquqa, daqquqiet, daqqiq, iddaqqaq, jiddaqqaq, iddaqqaqt, tid-

daqqaq, ndaqq, indoqq, mdoqq.

da§al (
√
D�L) die§el, da§let, d§alna, da§lu, jid§lux, jid§ollokx, tid§ollix, jid§lu,

d§alt, da§lilna, da§lilha, tid§ol, jid§ollok, tid§olli, jid§ol, da§litlu, de§lin, d§ul,

d§uli, d§ulija, d§ulin, d§ula, da§la, da§liet, da§§al, mda§§al, da§§alt, ida§§al,

da§§alha, jda§§al, jda§§alx, ida§§alha, dda§§alnix, da§§altni, ida§§alhom,

da§§alin, da§§ali, tid§il, tid§ila, idda§§al, nda§al, tinda§allix, tinda§al, nd§il,

mid§al, mid§la.

boqqa (
√
BQQ) boqoq, boqqiet, bqajqa, bqajqiet, baqqa, mbaqqi, tbaqqix, tbaq-

qiqa, tbaqqija, tbaqiq, tbaqija.

bierek (
√
BRK) mbierek, jbierek, imbierek, tbierek, tberik, tberika, barka, barkiet.

silet (
√
SLT) mislut, siltu, mislutin, nisiltu, jisiltek, misluta, misultin, silta, siltiet,

slejta, slejtiet, sellet, msellet, selliet, sellieta, sellietin, sellieti, sellietija, tislit,

tislita, issellet, tissellet, issielet, nsilet, jinsilet, stilet.

bieg§ (
√
BJG§) mibjug§, ibig§, tbig§hieli, beg§et, jbig§ek, bieg§et, jbeg§iha,

bejg§, bieg§a, bejjieg§, nbieg§.

Appendix A. Test Set 85

batal (
√
BTL) mibtul, btalet, ibtal, battal, mbattal, imbattal, battala, battalin,

tabtil, tabtila, btala, btajla, btajliet, tbattal, jitbattlu, tbattlu, tbattil, tbattila.

ba§ar (
√
B�R) ib§ra, b§ar, b§ur, b§ajjar, b§ajra, b§ajjer, ba§ri, ba§rija, ba§rin,

tib§ir, tib§ira, ba§§ar, ba§§ara, tba§§ar, tba§§ir.

ca�as (
√

CFLS) m
ca�as,
ca�astli,
ca�astha,
ca�is,
ca�es,
ca�asa,
ca�asin,
ca�asi,

i
c
ca�as,
ca�usi,
ca�usija
ca�usin.

cek
cek (
√

CK
CK) m
cek
cek, j
cek
cek,
cek
cku,
cek
cikhielu,
cek
ciklu, i
cek
cek,
cek-

ckuha,
cek
cik,
cek
cika,
cek
cikiet,
cek
ciek,
cek
cieka,
cek
ciekin,
cek
cieki, i
c
cek
cek,

cek
cikija.

cekken (
√

CKN) m
cekken,
cekkinha,
cekkien,
cekkiena,
cekkieni, ti
ckin,
cekkin,

ti
ckina, i
c
cekken, ti
c
cekken, ie
c
cekken,
ckien, ji
ckien,
cokon,
ckunija,
ckejken,

i
cken,
ckejkun,
ckejkuni,
ckejkuna,
ckejkunin.

A.2 A�xes Used for Stemming

Pre�xes

d-, id-, il-, im-, in-, ix-, i
c-, i
g-, i
z-, ir-, is-, j-, m-, n-, nt-, s-, st-, t-, z-,
c-,
g-,

z-.

Su�xes

-a, -abbli, -ajn, -ajt, -ajtu, -aj
zer, -an, -ant, -anza, -ar, -at, -ata, -ati, -attiv,

-atur, -aw, -ejn, -ejna, -ejt, -ek, -ell, -ella, -elli, -erija, -et, -ew, -h, -ha, -hom, -i,

-ien, -iet, -ija, -ijiet, -iku, -ilit�a, -iltà, -in, -ist, -ista, -istika, -istiku, -isti
ci, -it,

-ita, -ittivament, -ittivit�a, -iv, -ivament, -ixxa, -izza, -i
zmu, -ja, -jiet, -ju, -k,

-ki, -kom, -li
zma, -li
zmi, -li
zmu, -lment, -ment, -menti, -na, -ni, -ok, -olo
gija,

-ometru, -t, -tejn, -ttiv, -ttiva, -ttivi, -tu, -tur, -tura, -turi, -u, -x, -zzjoni,

-zzjonijiet, -
ci.

The table shown above displays the list of pre�xes and su�xes that was used

during the tests carried out in Chapter 5. It must be noted that this set of a�xes is

not exhaustive, and it contains enough a�xes so that the bi-gram and the root-based

clustering algorithms could be tested. Therefore, although this a�x set is appropriate

for the the dictionary test, for the second set of tests (the bible text test), some of these

Appendix A. Test Set 86

were applicable, while others were not. Also, as already discussed in De�nition 3.1

on page 35, we do not employ a recursive morphological structure.

Appendix B

Maltese in a Nutshell

This appendix attempts to provide a very brief introduction the the Maltese grammar.

It does not try to give a full coverage of the grammar, but rather highlight the main

points in how words and verbs are formed, allowing one to see to what extent the

Maltese language is `complex' in relation to other languages.

Maltese is the o�cial language of the Maltese islands, and is spoken by a third of a

million people inhabiting the island, as well as by immigrants scattered in Austraila,

Canada and the USA. Maltese is classi�ed as a dialect of Arabic, which however

includes various di�erences not found in other dialects deriving from Arabic. In addi-

tion, Maltese also incorporates a long list of Romance and Anglo-saxon words. Maltese

thus combines the characteristics of Southern Europe and North Africa, re�ecting its

geographic location and it is precisely for this reason, that Maltese stands out, and

demands special attention.

B.1 Basics

B.1.1 The Maltese Alphabet

Although Maltese is a Semitic language, it uses Latin and additional modi�ed Latin

characters for its alphabet. It was codi�ed in the 1920s by the `Akkademja tal- Malti'

(formerly known as the `G§aqda Kittieba Maltin'). The alphabet is made up of 30

letters, two of which, the `ie' and `g§' are made up of two characters each. The vowels

are `a', `i', `u', `e', `o' and `ie', the �rst �ve of which can be either pronounced as

short or long vowels; the vowel `ie' is always pronounced as a long vowel. The Maltese

alphabet is as follows:

87

Appendix B. Maltese in a Nutshell 88

A a, B b,
C
c, D d, E e, F f,
G
g, G g, G� g§, H h, � §, I i, IE ie, J j,

K k, L l, M m, N n, O o, P p, Q q, R r, S s, T t, U u, V v, W w, X x,

Z
z, Z z.

B.1.2 Roots

The characteristic of Semitic languages (unlike Romance) is that vowels change easily

or in some cases, disappear completely. On the other hand, the consonants do not

change so often (not even their relative position), and this is especially true for the

radical consonants (i.e. consonants of the root). The root consonants are usually

those which appear in the simplest word form, which is usually the mamma (the �rst

verb form, past, 3rd person, masculine) or the simplest noun (in the case where a verb

does not have a �rst verb form). Thus for example, the roots of kiteb (wrote), qatel

(killed), mar (went) and ba§ar (sea) are k-t-b, q-t-l, m-w-r and b-§-r respectively.

Note that the the verb mar is a weak verb, that is, even though the consonant `w'

is not found in this form, is can be found in variants of this word, such as mawra

(a cruise/journey). The consonants `j' and `w' very often appear and disappear in

di�erent forms of the same word, and are called weak consonants. In the case of the

word ba§ar, which is a noun, no �rst verb form exists, and therefore, we use the noun

to extract root consonants. It is common practice that for weak verbs, one considers

di�erent forms of that verb so as to try to determine which consonants are missing.

The majority of the Maltese verbs are triliteral, meaning that their root contains

three radical consonants. However, there exists also a quite large number of quadrilit-

eral verbs, together with a very small amount of verbs which have a root made up

of only two consonants. This last set of verbs must not be confused with triliteral

verbs having a weak consonant, since in their origin, these have exactly two radical

consonants, e.g. bin (son).

B.1.3 The Article

In its simplest form, the article is the letter `l-' which is placed in front of a noun to

make it a determiner. It is possible for the article to take an additional `i' (called the

vokali tal- le§en) in front of the `l-' so that it is pronounced correctly, such as in

il-
gurija (the jury)

Appendix B. Maltese in a Nutshell 89

However, the addition of an extra `i' is not performed if the word preceding the

article ends in a vowel:

kellu l- �us (he had the money)

In the case where the article appears before the consonants `
c', `d', `n', `r', `s',

`t', `x', `
z', `z', the `l' in the article changes into one of the respective consonants. If

appropriate, the article is also preceded by an `i'.

i
c-
cek
cieka (the rattle), id- dg§ajsa (the boat), in- nanu (the dwarf), ir-

re (the king), is- serp (the snake), it- taxxa (the tax), ix- xita (the rain),

i
z-
zahar (the blossoms).

B.2 Nouns

B.2.1 Pronouns

The personal pronouns are:

Singular Plural

jiena/jien (I/me) a§na (we/us)

inti/int (you) intom (you)

huwa/hu (he) huma (they)

hija/hi (she) huma (they)

When we want to produce the negative of these, we precede them by the word `ma'

and add the su�x `x'. However, in this case the `a' of `ma' is written as an apostrophe

(') since two vowels cannot lie near each other1. Thus the above are written as:

Singular Plural

m'iniex (I'm not) m'a§niex (we're not)

m'intix/m' intx (you're not) m'intomx (you're not)

m'huwiex/m'hux/mhux (he's not) m'humiex (they're not)

m'hijiex/m'hix/mhix (she's not) m'humiex (they're not)

1Note that the letter `h' is followed by a vowel; however we disregard this letter and consider
the letter following it, which in these particular cases is a vowel. The `h' is not pronounced in the
beginning and middle of words, however in some cases it is pronounced as `§' at the end of the word.

Appendix B. Maltese in a Nutshell 90

Unlike English and other languages, in Maltese, pronouns are attached directly to

the verb or noun, and thus a given word may refer to di�erent persons (by attach-

ing a number of su�xes) at the same time. The negative is also attached after all

pronominal su�xes. The pronominal su�xes are the following:

Pronoun Su�x

jien i, ja, ni*

inti k, ek, ok

huwa u, h, hu*

hija ha, hie, hi

a§na na, nie

intom kom

huma hom

The su�x `hu' is never used at the end of the word; in fact in Maltese no word

ends in `hu'. Also, the use of the su�x `ni' is only permissible at the end of verbs.

Using the table above, complex expressions can be formed, for example:

my thing = tieg§-i(1st. pers.)

he did not �nd his thing = ma(neg.) sab(found)-hi(3rd. pers.)-lu(3rd.

pers.)-x (neg.)

B.2.2 Nouns

While in Maltese, adjectives have both plural and singular, nouns have singular,

plural, collective and the so called g§add imtenni (doubling).

The collective, as its name implies, is a singular word which however shows a

collection of objects, like dubbien (�ies) and larin
g (oranges). If we add and `a' at the

end of these kinds of words, we are able to obtain the feminine, e.g. larin
ga (orange).

In addition, in Maltese, we have the plural of the plural, in which case the collective

dubbien becomes dubbiniet2.

The g§add imtenni is used to denote things that occur in pairs, like bajdiet (two

eggs), sentejn (two years), dudejn (two worms). If the plural is not `imtenni' then, it

is either sound or broken. The sound plural is called so because it just adds a su�x to

the word, without breaking its structure; conversely the broken plural does not add

2Note that any word can only contain a maximum of one `ie' in it.

Appendix B. Maltese in a Nutshell 91

any su�xes, but changes the structure of the word (there are no rules for construction

of the broken plural). In some cases, words can have both a sound and broken plural:

tapit (carpet), tapiti (carpets, sound), twapet (carpets, broken)

furketta (fork), furketti (forks, sound), frieket (forks, broken)

Both of the above are Romance words, and they can take the broken plural which

is usually associated with Semitic languages, as Romance languages do not have the

notion of this type of plural. We can see how such loan words are immediately

integrated seamlessly into the Maltese morphology. In the case of Semitic words,

they can either take the sound or broken plural, but not both:

qarib (relative), qraba (relatives)

ba§ar (sea), ib§ra (seas)

The sound plural is built using the following rules:

1. Addition of `ijiet' after a word: truf (edge); tru�jiet (edges), bajja (bay); bajjiet

(bays).

2. Addition of `ien' or `an' after a word: nar (�re); nirien (�res), qieg§ (bottom);

qieg§an (bottoms).

3. Addition of `a' after a word, which can either show the plural or the 3rd person

feminine: giddieb (liar); giddieba (female liar/liars), sewwieq (driver); sewwieqa

(female driver/drivers).

4. Addition of `in' after a word: qaddis (saint); qaddisin (saints).

5. Addition of `t' at the end of a word, providing the word is feminine: kewkba

(star); kewkbiet (stars).

B.2.3 Diminutives

The diminutive indicates smallness in the meaning of words. Some of the diminutives

are formed by adding an `a' after a word, while others add a `j' as an in�x, for example:

gnien (garden);
gnejna (small gardern), id (hand); wejda (small hand),

§ob
za (loaf); §bej
za (small loaf), triq (road); trejqa (small road/path),

xi§ (old man); xwejja§ (small dear old man).

Appendix B. Maltese in a Nutshell 92

B.3 Verbs

B.3.1 Types of Verbs

Maltese verbs are categorized as sound or weak. Sound verbs have three consonants in

their mamma which are neither `j' nor `w'. If the last two consonants of the mamma

are the same, then the verb is known as trux (deaf). Weak verbs have one of the weak

consonants in their mamma, and are categorized into three groups:

• xebbihin, which have the �rst radical consonant `w' (there is one special case

involving `j', jassar): wiret (inherited).

• mo§�jin, in which their second radical consonant appears either as a `w' or a

`j': miet (died), tar (�ew), sar (cooked).

• neqsin, which have their third radical consonant `j': mela (�lled),
gera (ran),

xela (accused).

B.3.2 The Verb Forms

The verb forms are very important, and are used to change the base form of a given

verb. There are ten verb forms in Maltese, but not all verbs appear in all ten forms.

The �rst form is the main verb (mamma). Note that for some verbs, the �rst form

does not exist; this is common in verbs deriving from a noun. Nowadays, the fourth

form is no longer used, thus we are left with the eight forms shown below:

The second form Verbs duplicate their second radical consonant: nefa§ −→ ne�a§.

The third form Verbs lengthen the �rst vowel occurring in the �rst verb form

qag§ad −→ qieg§ed.

The �fth form Adds a `t' infront verbs of the second form: ne�a§ −→ tne�a§. If

however, the verb starts with `
c', `d', `
g', `s', `x', `
z' or `z', then the `t' changes

into the respective consonant, thus, we do not say t
carrat but
c
carrat.

The sixth form Adds a `t' infront verbs of the third form: qieg§ed −→ tqieg§ed.

The seventh form Verbs add either a `n' or `nt' in front of verbs of the �rst form,

or `n' infront of, and `t' after the �rst radical consonant of verbs in the �rst

from. Thus: qatel −→ nqatel, lewa −→ ntlewa, silet −→ nstilet.

Appendix B. Maltese in a Nutshell 93

The eight form These verbs add a `t' after the �rst radical consonant of verbs in

the �rst form: nesa −→ ntesa.

The ninth form Verbs in the �rst form drop the �rst occurring vowel in the word,

and then, lengthen the remaining ones: seba§ −→ sbie§, *mejel −→ miel.

The tenth form Adds an `st' infront of verbs: stienes, stejqer.

In the case of quadriliteral verbs, they can be either main or derived. They are

derived by adding a `t' in front of the main verb, la§la§ −→ tla§la§, Again, for dendel

we do not say tdendel but ddendel.

B.3.3 Verb Conjugates

When we conjugate verbs in the present tense, we pre�x them as shown below:

Singular Plural

jiena (I/me) Noqtol (I kill) a§na (we/us) Noqtlu (we kill)

inti (you) Toqtol (you kill) intom (you) Toqtlu (you kill)

huwa (he) joqtol (he kills) huma (they) Joqtlu (they kill)

hija (she) Toqtol (she kills) huma (they) Joqtlu (they kill)

The imperative in the present tense is as follows: inti oqtol (you kill, sing.), intom

oqtlu (you kill, pl.)

Conjugates in the past tense attach the following su�xes as shown:

Singular Plural

jiena (I/me) qtilT (I killed) a§na (we/us) qtilNA (we killed)

inti (you) qtilT (you killed) intom (you) qtilTU (you killed)

huwa (he) qatel (he killed) huma (they) qatlU (they killed)

hija (she) qatlET (she killed) huma (they) qatlU (they killed)

Note: This appendix was partially written with continuous reference to the books

by the Academy of Maltese (1998) and Cachia (1994), which are two excellent re-

sources on the Maltese grammar. It is recommended that these books are consulted

should the need for further details arise.

Appendix C

Using the Software

This appendix provides instructions on how the system should be installed on a new

host, and also gives an outline of the functions which are available to the user. The

software can be found on the CD accompanying this report, and includes also the

versions of MySql and .NET connector driver that were used during the development

of the system. All directories that will be mentioned are with reference to the CD.

C.1 Setting up the Lexicon Services on a new Host

Before any of the applications can be used, the .NET framework together with the

Internet Information Services (IIS) server must be installed. The .NET framework is

required by all applications, since any code that has been written, speci�cally targets

the .NET framework instead of the operating system directly. The IIS web server

is needed so that the system is able to host not only the website but also any web

services that are to be deployed. The .NET framework is freely available, and can be

downloaded from Microsoft's website. IIS is available on the WindowsXP distribution,

and should be set up before the .NET framework is installed. Instructions on how

these can be installed are found on the vendor's website and WindowsXP help. Once

both have been set up, the following instructions must be followed in order:

Installing MySql and the .NET Connector

Both the MySql database server as well as the .NET connector can be downloaded

for free from the MySql website (http://www.mysql.com). Ideally, MySql is installed

�rst, followed by the installation of the .NET connector. Step-by-step instructions are

94

Appendix C. Using the Software 95

provided by the installers, and therefore, no additional instructions are given here. It

is recommended that the default directory settings are used.

Creating the Lexicon Database

Once the database server is set up, the lexicon database, together with all its tables

must be installed before the system can be used. For convenience, an SQL script

�le is provided (binaries\lexicon.sql), and this should be called from the MySql

command prompt, as follows:

prompt> mysql -u root -p < lexcion.sql

When MySql asks for the password, the password which was speci�ed during the

installation of MySql (i.e. the root password) must be speci�ed. Once the SQL script

�le is processed, all the tables and necessary constrains, together with a user identi�ed

as `client', are set up. This user is used by the application to access the database,

and is given enough privileges to read and write from the database tables.

Installing the Administrator Software

All the applications have been conveniently packaged in setup �les to allow easy

deployment of the software on any host machine. For the system to be operable,

only the website and chat server are required. However, it is recommended that the

web service and a bare bones client set up with the administrator plug-ins are also

installed.

The website installation �les can be found at binaries\websiteSetup, and it is

recommended that that default options are used. The web service can be installed

from binaries\dictQueryWebserviceSetup, while the standard (without plug-ins)

eLexi application can be installed from binaries\eLexiSetup. Once installation is

over, administrator plug-ins which are located in binaries\adminPlugins can be

copied to the ..\eLexi\plugins directory. The chat server can be installed from

binaries\chatServerSetup.

Installing the Standard User Software

The software for the standard user has been appropriately packaged so that both the

basic eLexi application together with the standard user plug-ins are installed automat-

ically. The setup �les for this distribution can be found in binaries\eLexiUserSetup.

Appendix C. Using the Software 96

In addition to the main eLexi client application, the Internet Explorer dictionary

bar provided in binaries\dictionaryBarSetup may be installed to provide Internet
Explorer with the dictionary searching facility. Once the bar is installed, it must

be activated so that it is accessible from the View −→ Toolbars menu of Internet

Explorer.

Note that should any application require removal, it can be safely un-installed

from the Windows control panel.

C.2 Software Overview

This section describes brie�y the plug-ins included, and provides basic instructions

on their use. The compilation of an extensive online help system was impossible to

carry out due to the lack of time and also because such a job requires a signi�cant

amount time to complete. Nevertheless, we have tried to capture the main aspects of

the system and provide a concise reference manual.

C.2.1 The Administrator Plug-in

Before the application can be used, the user must possess a valid login which can be

obtained from the project website. This login is used to log into the application and get

access to the tools installed. Once login is completed successfully, the administrator

tools can be accessed from the Tools menu, as depicted in Fig. C.1.

All four dictionary management tools work on the same principle, and contain

functions to process amendments posted by users and access the database directly.

Since all of these enclose virtually the same functionality, we will tackle the most

complex component of them all: the dictionary management tool.

The dictionary management tool show in Fig. C.2 allows the user to view and

directly modify entries in the dictionary. Words in the dictionary can be introduced as

long as they already exist in the basic word list. This is done because the word list is

the basic collection of words, and any word that enters or leaves the lexicon must �rst

be added to this basic word list. This implies that all other tables such as the clusters

and the dictionary tables are controlled by the word list and therefore, should one

want to remove (or update) a word from the list, all occurrences of this word (whether

in the dictionary or in some cluster) are removed (or updated) automatically.

Words can be viewed on a pre�x basis, which means that records are retrieved if

Appendix C. Using the Software 97

Figure C.1: The administrator's tools menu.

Figure C.2: Using the dictionary management tool.

they match a given pre�x. This allows the user to view at most a set of words starting

with the same letter. The records retrieved can be viewed either in grid mode or in

record mode (Fig. C.2). This �gure depicts an entry for the word
gugarell (toy),

where relevant information such as the meaning and POS information is displayed.

POS information can be entered by using the POS construction dialog (Fig. C.3).

The `Audio �le path' �eld is used to supply the word with spoken audio, like for

Appendix C. Using the Software 98

Figure C.3: The part of speech construction dialog.

example, the pronunciation. It must be made clear that as a value, only the �le name

must be supplied. Then, the respective �le must be placed into ..\Website\audio
directory for the website to be able to reference it.

The management of amendments is very simple to carry out, and involves only

pressing the Accept or Reject buttons. Deletion and creation of records in the tables

underneath is automatically done for the user. Similar to the dictionary browsing

facility, amendments can be viewed either in grid or in record mode. In addition to

this, amendments for speci�ed dates can be viewed by selecting the desired date from

the provided calendar.

Appendix C. Using the Software 99

Figure C.4: The standard user dictionary tool.

C.2.2 The Standard User Plug-in

The standard user plug-in provides the opposite functionality that is provided by

the administrator plug-in, in that the client is a producer of amendments and the

administrator is a consumer � the bu�ers between these two are the amendment

tables to which user amendments are posted. As was done in the previous subsection,

only one tool will be considered, and again, the dictionary tool is discussed here (Fig.

C.4).

As can be seen from Fig. C.4, amendments can be initiated by either selecting a

dictionary entry or by posting a new amendment. In this current version of the plug-

in, creating a new dictionary entry requires pressing the Add dictionary amendment

button on the tool bar. In future versions, facilities for browsing the word list directly

from the dictionary tool will be supplied.

The tree view on the left of Fig. C.4, provides the user with the option to view

Appendix C. Using the Software 100

Figure C.5: Amendments stored locally.

both amendments which are stored locally or amendments which have been posted

but not yet addressed by the administrator. Amendments which are stored locally

can be posted all at once, or by speci�cally selecting the amendments to the posted.

Should the user quit the application, un-posted amendments are automatically saved

and loaded next time the application is loaded (Fig. C.5).

The user data �les contained in ..\eLexi\AppData\user_name where user_name
is the currently logged user, are stored in XML �le format, and can be conveniently

copied, moved around and even used on other machines containing the eLexi software.

C.2.3 The Text Tools Plug-in

The text tools (Fig. C.6 on page 102) are general text processing tools which can be

used by the administrator and the normal user alike. These tools are divided into

three categories shown below:

Appendix C. Using the Software 101

1. Word comparison, allowing the analysis between pairs of words. Both pair-wise

alignment as well as Levenshtein distance measurement are included here.

2. Word statistics providing the user with the facility to �nd out the frequency

and probability of occurrence of words from a text �le.

3. Text analysis tools which help the linguist process and make sense out of large

amount of texts. The tools provide facilities such as:

(a) Automatic pre�x and su�x �nding.

(b) Automatic word segmentation using the list of a�xes maintained in the

database.

(c) Automatic clustering of words from a text �le, where clustering is based

on either the root or stem of the words being processed.

(d) File joiner, allowing the user to form a word list from a number of �les.

This tool also supports rewrite rules which can be used to modify words

or letters in the source text as speci�ed by these rules. The changes are

saved in the output text.

(e) Web getter utility allowing the user to search the web for �les containing

a speci�ed set of words. Once such �les are found, these are automatically

downloaded and parsed so that markup tags are removed.

Comments

This appendix provided a very brief and general overview on how to set up the sys-

tem and use the plug-ins included. The user interface (UI) has been carefully crafted

so that it is intuitive and easy to use. The design of the UI should not be taken

lightly, since a carefully designed interface will immediately capture the user's atten-

tion without getting him confused in complex options and dialog boxes. In addition, a

well designed UI eliminates the need of an extensive help system where very detailed

descriptions are given.

The UI was designed partly by taking into account the new UI design model

invented by Microsoft. The aim of the Inductive User Interface (IUI) model suggests

new techniques by which the complexity can be reduced. Such techniques include

Appendix C. Using the Software 102

Figure C.6: The text tools available to the administrator and normal user.

providing limited options per screen, well de�ned tasks and using screens having clear

titles and objectives1.

As a last note, it must be kept in mind that this is a �rst release of the software,

and therefore some bugs are bound to be present. However, by time, it is hoped

that the system becomes more stable, thanks to the user comments and bug reports

submitted in forums.

1An extensive report on IUI can be found at http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/dnwui/html/iuiguidelines.asp

Bibliography

Joseph Aquilina. Maltese-English Dictionary. Midsea Books, 1987-1990.

Jim Breen. The EDICT Project, 1999. Monash University.

URL http://www.csse.monash.edu.au/�jwb/edict.html.

Mons. Lawrenz Cachia. Grammatika
Gdida tal- Malti. Veriats Press,
Zabbar, 1994.

Angelo Dalli. Computational Lexicon for Maltese. 2002. University of Malta, M.Sc.

Thesis.

Angelo Dalli. Data Representation Formats for Maltese. 2001. University of Malta.

URL http://mlex.cs.um.edu.mt/pub/datarp22.pdf.

Anne de Roeck and Waleed Al-Fares. A Morphologically Sensitive Clustering Algo-

rithm for Identifying Arabic Roots. 2000. In Proceedings of the 38 the ACL, Hong

Kong.

URL http://citeseer.ist.psu.edu/deroeck00morphologically.html.

Hervé Déjean. Morphemes as Necessary Concept for Structures Discovery from Un-

tagged Corpora. 1998. University of Caen-Basse Normandie.

URL http://citeseer.ist.psu.edu/454401.html.

Daniel Fasulo. An analysis of recent work on clustering algorithms. 1999.

URL http://citeseer.ist.psu.edu/fasulo99analyis.html.

Ana L. N. Fred and José M. N. Leitão. A comparative Study of String Dissimilarity

Measures in Structural Clustering. 1998.

URL: http://www.lx.it.pt/�fred/anawebit/articles/AFred_ICAPR98.pdf.

John Goldsmith. Unsupervised Learning of the Morphology of a Natural Language.

Computer Linguistics, 2001. University of Chicago.

103

BIBLIOGRAPHY 104

URL http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/

pdf/paper.pdf.

Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice

Hall, international edition edition, 2000.

Dimitar Kazakov. Unsupervised Learning of Na�ive Morphology with Genetic Algo-

rithms. 1997. In W. Daelemans, A. van den Bosch, and A. Weijters, editors,

Workshop Notes of the ECML/MLnet Workshop on Empirical Learning of Natural

Language Processing Tasks, pages 105�112, Prague.

URL http://citeseer.ist.psu.edu/kazakov97unsupervised.html.

Paul Micallef and Mike Rosner. Developing Language Resources for Maltese. 2000.

University of Malta. Proceedings of the Workshop on Resources for Minority Lan-

guages, Athens.

URL http://citeseer.ist.psu.edu/596384.html.

David W. Mount. Bioinformatics: Sequence and Genome Analysis. Second Edition.

Cold Spring Harbor Laboratory Press, 2001.

Academy of Maltese. Regoli tal- Kitba tal- Malti. Klabb Kotba Mlatin, 1998.

M. Rosner, R. Fabri, J. Caruana, M. Loughraieb, M. Montebello, D. Galea, and

G. Mangion. Linguistic and Computational Aspects of Maltilex. 2000. University of

Malta. Proceedings of the Workshop on Resources for Minority Languages, Athens.

http://mlex.cs.um.edu.mt/pub/athens2000.pdf.

Mike Rosner, Joe Caruana, and Ray Fabri. Maltilex: A Computational Lexicon for

Maltese. 1998. University of Malta.

URL http://mlex.cs.um.edu.mt/pub/montreal98.pdf.

David Sanko� and Joseph Kruskal. Time Warps, String Edits, and Macromolecules:

The Theory and Practice of Sequence Comparison. CSLI Publications, 1999.

Mike Scott. Oxford WordSmith Tools Version 4.0: An integrated suite of programs

for looking at how words behave in texts. Oxford University Press.

URL http://www.lexically.net/wordsmith.

Utpal Sharma, Jugal Kalita, and Rajib Das. Unsupervised Learning of Morphology

for Building a Lexicon for a Highly In�ectional Language. 2002. Tezpur University

BIBLIOGRAPHY 105

and University of Colorado.

URL http://citeseer.ist.psu.edu/596384.html.

